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Annals of Mathematics, 113 (1981), 367-382

The Dirichlet problem in
non-smooth domains

By DAVID S. JERISON* AND CARLOS E. KENIG*

Introduction

In this paper we examine the boundary behavior of solutions to the
Dirichlet problem for an elliptic operator 2S- = laj jaj, with smooth coef-
ficients aij, in domains D in Rm, m > 3, with non-smooth boundaries. The

domains we treat are given locally, in some Cm coordinate system, by the
graph of a continuous function qs, with Vq5 e LI, for some p, 1 ! p < oo.
Such domains are called LI' domains. (See Section 1 for the precise defini-
tions.) Note that L- domains are usually called Lipschitz domains. If D is
an LI' domain, and X e D, we study the "elliptic" measure a7, associated with
S and D at X. Thus, for f a continuous function on AD, the formula

u(X) = Hf(X) f doH gives the Perron-Wiener-Brelot generalized solu-
ID

tion of Su =0, and u = f on AD. (See Section 1 for the precise definitions.)
In [6] and [71, B. E. J. Dahlberg proved, for 2- A, and D an L- domain,

the following theorem:

THEOREM. a) Let a be the surface of measure of AD, and let a) -0,
X0 e D, be fixed. Then, a < a and ) ? a.

b) k e L2(du) and (1/u(A) 5 k2 du) < C(1/af(A) 5 k du), where k =dw-/da.

c) If f e LP(du), p > 2, then u(X) Hf(X) converges non-tangentially
to f almost everywhere (du), and its non-tangential maximal function N(u)

satisfies j|N(u) |LP(dc) -< C ITf LP(dc)

In [11], a new proof of this result, based on a simple integral identity,

was announced. This proof extended part a) to (locally) star-shaped LI,
domains in Rm, p > (m - 1). It also showed, under appropriate exterior
star-shaped assumptions, that in this case k e Lq(du), for q 2 - (2/p).
The domains in question also had to be assumed to be regular for the
Dirichlet problem (again, see Section 1 for the precise definitions).
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368 D. S. JERISON AND C. E. KENIG

In this paper, we give detailed proofs of the results in [11], and we
extend the integral identity and its consequences to arbitrary elliptic opera-

tors k, with smooth coefficients. The coordinate-free setting has allowed us
to dispense with cumbersome interior and exterior star-shaped conditions.

We have also been able to drop the hypothesis of regularity.
In addition, there are two new endpoint results. For LI domains, we

show that j) A< . E. M. Stein has pointed out ([16]) that functions with
gradient in the Lorentz space L '1(R3) are continuous and differentiable
almost everywhere. Using this result we are able to show that harmonic
measure and surface measure are mutually absolutely continuous in Ll--1l
domains in Rm. Notice that this is an appropriate analogue of the classical

result in R2 that harmonic and surface measure are mutually absolutely
continuous on domains with rectifiable boundary.

Finally, we treat the Dirichlet problem in LI domains, p > m -1,
obtaining a result that is similar to the qualitative part of c) in the theorem
above. We have shown that if fe Lr(du), r > 2((p - 1)/(p - 2)), then
u(X) Hf(X) satisfies 2Su- 0 in D, and u converges non-tangentially
almost everywhere (du) to f. There is also an endpoint result in L -l l
domains. However it seems that no quantitative non-tangential maximal
function estimate holds in LP domains, p < in. For such estimates in more

general domains than Lipschitz, see [12].
One might think, because of the results in [3], that the coefficients aij

need only be bounded and measurable for our theorems to hold. However,
in [2] examples are given of elliptic operators E a&aijaj, aij e Lo, for which

the elliptic measures do and da are mutually singular, even on smooth
domains.

In Section 1, we present the relevant definitions and notations. In
Section 2 we prove the main lemmas for smooth domains, which give the
necessary a priori inequalities. In Section 3, we give the estimates for
elliptic measure, and in Section 4 we treat the Dirichlet problem.

We would like to thank Professor E. M. Stein for many helpful conver-

sations. We would also like to thank Professors M. S. Baouendi and E. B.
Fabes for helpful suggestions.

Section 1

In this section we give the definitions and set up the notations that will
be used throughout the paper. We also recall the basic results on elliptic
operators that will be needed in the sequel. Our main reference for elliptic
operators is [14].
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THE DIRICHLET PROBLEM 369
Definition 1.1. Let D c RR be a bounded domain and Q0 e AD. We say

that D is given near Q0 by the graph of a continuous function 0: R"-' + R.

with O(O) = 0, if there exist an open set U, a C"o diffeomorphism Y): RM Rm,
with 7(QO) = 0, and numbers ro > 0, so > 1 such that I O(x) I < sor, for I x I < rO,

7(U) = {(x, y); IxI < ro, IyI < soro} and 77(UfnD) = {x, y); Ixl< ro, II < s,,ro,
y > v(x)}. The pair (U, A7) will be called the coordinate chart corresponding

toqs.

Definition 1.2. Let D c Rm be a bounded domain, and Q0 e AD. We say
that D is given near Q, in rectilinear coordinates by the graph of a continu-
ous function A, if in the definition above we can take 7 = id.

Definition 1.3. Let D ci Rm be a bounded domain with rectifiable
boundary. D is called differentiable almost everywhere if for almost every

boundary point Q, D admits a tangent plane at Q. Note that if D is given
near Q) by the graph of a function 0, D is differentiable almost everywhere

near Q, if and only if s is differentiable almost everywhere in IxI < r,, i.e.,
if for almost every x, I x I < ro, there exists a linear function A(x) such that
O(x + y) - O(x) - A(x)(y)I = O(Ily) as IyI --0.

Definition 1.4. Let D c Rm be a bounded domain. D is an LP(BMO,)
domain if near every boundary point Q0, D is given by the graph of a
continuous function A, with Vs e L-(BMO). Similarly we can define Lu"'
domains as given by graphs of functions 52 with VGeL"-"', the Lorentz
space.

Note that L- domains are usually called Lipschitz domains.

Definition 1.5. Let D c Rm be a bounded domain. D is a C"o domain,
with defining function p, if p is defined in a neighborhood of D, p is Coo,
p(x) < 0 if and only if x e D; {p(x) = 0} = AD, and I Vp(x) I > 0 if x e AD.

We will consider operators 2 = 1:i ajaij(x)dj, where aij(x) = aji(x), a
are Co functions in Rm, and 2 is uniformly elliptic, with ellipticity constant
(i.e., X~ A 2 < E, a j,(x)$j < ' - : i) for all $ (i,, * , e) in Rm, and
all x e Rm. Notice that the class of these operators is invariant under diffeo-

morphism. We will be concerned with the Dirichlet problem for ? on a
bounded domain D of the kind considered in Definition 1.4. We remark that
these operators verify the maximum principle, and Harnack's inequality
(see [14]).

We will now introduce the notion of elliptic measure for one of these
operators. An extended real valued function u on D is called an p-super-
solution if i) u is not identically + oo on D; ii) u > - co on D; iii) u is lower
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370 D. S. JERISON AND C. E. KENIG

semicontinuous in D; and iv) if W c D, and h is continuous on W, 2h = 0
on W, and u > h on aW, then u > h on W. A function u is called an 2-sub-
solution if -u is an 2-supersolution. Let f be defined on AD. The upper
class of functions

Uf ={u: u is either identically + oo on D, or u is an 2-supersolution in D,

with lim infx OQ u(X) > f(Q), for all Q e AD,

u bounded below on D} .

The lower class Lf is

Lf = ju: u is either identically - oo on D, or u is an 2-subsolution in D,

with lim supx oQ u(X) ? f(Q) for all Q e AD,

u bounded above on D} .

Definition 1.6. Hf = inf {u, u e Uf} is the upper solution for the gener-

alized Dirichlet problem for f. Hf = sup {u, u E Lf} is the corresponding
lower solution.

Definition 1.7. If Hf = Hf = Hf on D, and S(Hf) = Oon D, f is called
a resolutive boundary function.

THEOREM 1.8 (Wiener [18]). Iff is a continuous, real-valued function
on aD, D a bounded domain in Rm, then f is resolutive.

As a consequence of Wiener's theorem, it is possible to define the elliptic
measure for L in D.

The unique probability Borel measure on AD, ol4, such that for all con-

tinuous f on AD, Hf(X) = fda4, is called the elliptic measure for D,

evaluated at X, associated to 2. When 2 is clearly understood in context,
we shall simply write (x for 2-elliptic measure evaluated at X.

As a consequence of Harnack's inequality, for any X1, X2 in D, the meas-

ures (i4x and (0 42 are mutually absolutely continuous, C < (do1)/(d#2) ?
1/C, and LP(doxi) = LP(d#x2), with comparable norms. A function f will be
said to belong to L1(dwo) if f e Ll(dwox) for some (and hence all) X C D.

THEOREM 1.9 (Brelot). Let D be a bounded domain in Rm. A boundary
function f is resolutive if and only if it is in Ll(dw). In this case,

Hf(X) = 3 fdwox for all Xe D. (See [1].)

Definition 1.10. Let D c Rm be a bounded domain. D is regular for the

Dirichlet problem, with respect to 2, if given any continuous function f on
AD, one can find a function u in C(D), with 2u = 0 in D, u -a= f. Note that

necessarily u = Hf.
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THE DIRICHLET PROBLEM 371
We remark (see [14], IV, 28) that a domain D is regular for 2 if and only

if it is regular for the Laplacian A. A consequence of this is that regularity
is a local property of AD, invariant under diffeomorphism.

Unfortunately, as we shall see later on, LI domains, p < 0o, need not be
regular. However, the set of irregular points has capacity 0, by a theorem

of Kellogg ([13]), and thus has 0 surface area (see [4] for example).

We will usually be dealing with a bounded domain D, contained in a big,
fixed ball B, with D ci B/2, the ball with the same center as B, and half the

radius. F(X, Y) will denote the Green function for 2 in B (see [14], pages
20, 21, 80 for the definition and properties of F). We will use the following

estimates for F, which hold uniformly for X, Y e B/2, X # Y:

(1. 11) i F(Xp Y)| <-I-Cm2
ii) ! 3Xi ( X -Y

_ _ _ _ Ciii)dX3XF(Xj Y) <- l m

Moreover, F(X, Y) = F( Y. X), and F is unique. We note that similar
properties hold for the Green function G of any smooth domain D ci Rm.
Thus, if D is smooth, D ci B/2, we have G(X, Y) = F(X, Y) - gx(Y), where,
for each fixed X e AD, Sgx = 0, and gx(Q) = F(X, Q), for every Q e AD.

As an application of Stokes' theorem we obtain (see [14], p. 21, 10.4),

(1.12) U(X) - G(X, Y)f (Y) d Y + <91Q VQG(X, Q)>O(Q) du(Q) ,

where Su = f in D and u ID = 0 and 9YLQ is the conormal; i.e., ?Y(Q = A(Q)NQ,

where NQ is the inward pointing normal and A(Q) = (aj(Q)). As a conse-
quence of this formula, we see that for a C- domain D, kX(Q) _ (dwX)/(du) =
<KQ, VQG(X, Q)>. We will identify the vector MYQ with the vector field
D = <9Q, VQ>.

Section 2

In this section we establish the main lemmas needed for the proofs of
our theorems.

LEMMA 2.1 (The main identity). Assume 0 e D, D ci Rm is a C? domain,

with defining function p. Assume D ci B/2, and F(Y) = F(0, Y) is the Green

function of B. with pole at 0. Thus G(Y) = G(0, Y) = F(Y) - g(Y), where
2g = 0, and g OD = F ID. Let k(Q) = doll/da, and V be a C? vector field, with
V(O) = 0. Then,
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372 D. S. JERISON AND C. E. KENIG

|D Vp *c2da k (VF)kd- d G(Y)ISi, V](g)(Y)dY.aD 91 p aD D
Proof. Because <K9Q, NQ> K <A(Q)NQ, NQ> > X, we have V(Q) = T(Q) +

c(Q) * 9Q, where T is a vector field tangential to AD. Since G vanishes on AD,

TG = 0, and so VG = c(Q)<K1Q, VG(Q)> = c(Q)k(Q). Thus, (VG)kdaur ~~~~~~~~~~~~~~~~~~~~AD
a c(Q)k2(Q) du. Now Vp = Tp + c(Q)91p, and Tp = 0. Note that lp # 0.

In fact,

olp = <A(Q)NQ, Vp(Q)> = KA(Q) VIP(Q) , Vp(Q)) Vp(Q)|

Thus c(Q) = Vp/lAp. Moreover, VG = VF - Vg, and so,

| 0 lk2du= (VF)kdz - (Vg)kd.AD A po as as
Since S(Vg)(0) = 0, (1.12) implies that

(Vg)kdo= d G(Y)S(Vg)(Y)dY.

But, Sg = 0, and so our identity follows.

We remark that when 2 = A, and Vf = X Vf, this identity coincides
with the one given in [11].

LEMMA 2.2. Let D c Rm be a bounded Cw domain, 0 e D. Let (U, r7), Q0

and 0 be as in Definition 1.1. Assume Wci U, and let A =W n AD. Then

( k2(Q) da < C
+ I vo 2)1"2

where C depends only on dist (0, AD), dist (0, U), W, U, Y, bounds for the a

and their derivatives on a ball B such that D c B/2, and on the ellipticity
constant X.

Proof. Replacing 2 by another operator of the same kind (again denoted
by S) we can assume that D is given near Q0 in rectilinear coordinates by
the graph of i, and that W c U (see Definition 1.2). The origin in the old
coordinates goes to a point P0 in the rectilinear coordinates.

Pick 0 e C, 0 =_ 1 on W, 0 -0 outside of U, and define Vf(z) =
0(z)(a/ay)f(z), where z = (x, y). On supp 0, we can take p(z) = y - O(x) as
a defining function of D. We recall that 91p Vp }, and thus, for z e supp 0,

ip -(1 + I VO 12)1/2. Also, Vp = 0(z), and thus, Lemma 2.1 implies that

(1 + |V|2)1/2 d C a( VF)k da + c G(Y)[S, V](g)(Y) d Y
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THE DIRICHLET PROBLEM 373
On the other hand, (1.11) ii) shows that j VF(X) I < C/l X - PO Im-, and thus,
since P0 X U, supp 0 C U, I VF I < C. Hence, the first term has the correct

bound. From now on, integrals of the form f and _ f will represent

integration with respect to volume. The volume element will be omitted
unless a surface integral appears in the same formula.

Now, let

S = [S, V] = Lij bi(x)aiaj + Li ci(x)ai = Lij ai(di(X))aj + Ei l(x)ai,

where the dij, the li vanish outside of supp 0 C U and have bounds with the
right dependence. Let W = supp a. Since G vanishes on AD, using the
divergence theorem and the remarks above, we see that

<C V](g)) < <VG, Vg> + W_ GIVgj} I + II;D wnD wsD
JV< I JQlVg I + 8_ Vg 12wnD wnD

?-(|- IvFI2)(|- v2)Vg 12 + I 'Vg12.wnD wnsD wnD
In WnD, I VFI < C, andI W nD I ? I Bf . Thus, all we have to estimate is the
term involving Vg. Let d = min {dist (P0, AD), dist (P0, U)}. Let X e C-(Rm),

X _ 1 outside B(Po, d), X -= 0 in B(Po, d/2). Let w solve

2w = 2XF(*) w
W1 OD = 0

Then, g = XF - w. As before, I V(XF) 12 < C. Thus, we want to bound
ZnD

I VVw12 < I VVw12. ButwnD D
V I~2 _ <AVw, Vw> = - (w) = (XF) w

by (*) and the divergence theorem. Moreover,

2| S(XF)w | 51(XF) 2)(l Jw2)

and 112(XF)IIO < C. The maximum principle applied to g shows that w
Ig - XF ? C, and thus I is controlled. II can be estimated in the same
fashion, and thus the lemma is established.

LEMMA 2.3. Let D c RN be a bounded Coo domain. Let (U, ry), Q0 and t

be as in Definition 1.1. Assume that 2r < ro, and let Ar = 7-1{(X, ))(X));

Ix] < r}, Zr = )-1(O, 2sor). If kr - (dolzr)/(d), then kr da _ c/rm-1, where

This content downloaded from 96.246.51.137 on Sun, 22 Sep 2024 14:45:35 UTC
All use subject to https://about.jstor.org/terms



374 D. S. JERISON AND C. E. KENIG

C depends only i I10, ro0, r, bounds for the aij and their derivatives on a
ball B with D c B/2, and on the ellipticity constant X.

Proof. The proof is essentially the same as the one of Lemma 2.2, if
we replace 0 by Zr, and keep careful track of the dependence on r of the

constants appearing. As usual, we may assume that v = id. Thus, Ar=
{(X, 0(x)); IxI < r}. Let W = {(x, y); IxI < (3/2)r, IyI < (3/2)sor}, W = {(x, y);
IxI < r, IyI < sor}, and pick a 1 in W, 0 outside of W. We define V as in
Lemma 2.2, and we thus get

rk 1du < C (VF)kr du + C G(Y)[S, V](g)(Y)dY

where C has the correct dependence. We now note that

Mt dist (Zr, W) - r, dist (Zrp W) -_ r , dist (Zr, AD) r ,
where the constants depend only on lIVsIK. Also, VF(X) | _ C/l X-ZrjM-'

and so, on supp VF, I VFI ? C/r-'. Thus, we need only show G(Sg) ?

C/rm-', where S = [2, V]. Since a is supported in a cylinder of size r, we
now have S (1/r) Hi j ai(dij(x))aj + (1/r2) Li li(x)ai, where dij and li vanish
outside of W, and have bounds independent of r. Thus,

[Sg |I< C{-| I <VG, Vg>I + 1 - GIVgl} =? I + 1D r wnD r 2 Wn D
where C has the right dependence. We will estimate I, as before, the esti-
mate for II being analogous.

IIVF12 Vg12) + I Vg12r WAD wnD r wnD
By (t), in W n D, VFf ? C/rm1. All we have to show then is that

|- I{ Vg 12 C/(rm-2). Let d = min {dist (Zr, AD), dist (Zr, W)}. By (t), d r.

Choose X as in Lemma 2.2, and again, let w solve (*). As in Lemma 2.2,

g = ZF - w. Since V(ZF) = VF on W n D, we see that I V(ZF)12 <
wnD

C/r(m-2). Next, we have to estimate

- |<AVw, Vw> (XF) * w

By H6lder's inequality, this last integral is less than or equal to

( N I I )3'4 (I )/4

For the first factor, we note that supp ?(XF) c Rm\B(Zr, d/2), and so,
12(XF) I < C/1 X - Zr m on its support. Thus, the first factor is less than
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THE DIRICHLET PROBLEM 375
/r00 3/4

t-t4/3tm-' dt) = cr-m/4. For the second factor, the maximum principle

applied to g shows that i w I = i g -XFI 21 Fl ? C/l X -Zr Z, -2 Also, again
by the maximum principle, i w i C/rm-2, and thus in polar coordinates,

(| WV) < C{ t-4(m-2) tm-1 dt + | , dt < CD - rJo r4(mr
The integrals are convergent because m > 3. Putting together these last
two estimates, the lemma follows.

Finally, we need the following real variable lemma:

LEMMA 2.4. Assume that 0 is continuous, negative, and differentiable
at almost every point x of a ball B centered at the origin in Rm-1. Then,

given s > 0, there exists a closed set F c B, with I B\FI < e, and a Lipschitz
function * on Rm-1, with 0 = * on F, 0 < < 0 in B.

Proof. Because 0 is continuous, it is uniformly bounded in absolute
value by Mon B. Also, as 0 is differentiable, almost everywhere in B, if A(x)
verifies I O(x + y) - O(x) - A(x)(y) I = o(I y l) for almost everywhere x in B, the
function x -> A(x) is measurable, and finite almost everywhere. Thus, given

S > 0, there exists a constant Me and a closed set F1 c B, with I B\F1 ? s/2,
and, for all x in F1, all y with Iy I 1/M6, lp I (x + y) - O(x) I Me I yI (*). By
Theorem 2, page 248 of [15], we can find a closed set F c F1, with I F1\F ?
s/2, and a Lipschitz function g on Rm-', with 0 = g + b, and b _ 0 on F. We
now claim that there exists a constant CQ such that, for all x e B, I b(x) ? <
C~e(x), where a(x) = dist (x, F). In fact if a(xo) > 1/Me, our estimate follows

because 0 and g are bounded and b(xo) = (x) - g(xo). Assume 6(xo) < 1/M,
Then, there exists an x in F, with I x - x = a(xo) 1/Me Let y = 0- x.
Since O(x) = g(x), we have b(xo) = (xo) - O(x) - g(xo) + g(x). Thus, (*) and
the Lipschitz character of g imply our claim. Now let '--g + C6((x), 2
min (k, 0). r and F verify the lemma.

Section 3

In this section we establish our estimates for elliptic measure.

THEOREM 3.1. Let D be a bounded LP domain in Rm. Let Go be the ellip-

tic measure for 2, with respect to X0 e D.
a) If 2 < p < A0, then o << ?, and k eLq(da), q = 2 -2/p, where

k= do/da.
b) If p -A, then, for every surface ball A-B f AD, B an m-dimen-

sional ball centered at Q eC AD,
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376 D. S. JERISON AND C. E. KENIG

(' \ I k2 d) C? kda.
c) If D is differentiable almost everywhere, and p > 1, then a << c.

Proof. a) By the definition of an LP domain, to establish part a) it is
enough to show that if (U, A) is a coordinate chart corresponding to the
continuous LP function 5, and W C U, if E c W n AD, E closed and v(E) 0,

then (E) = 0, and if k dco/da, kq da < + o. Replacing 2 by another
operator of the same class (again denoted by 2), we can assume that D is
given near 0 e AD, in rectilinear coordinates, by the graph of a continuous

function A, with V0 C LP, and 0 C W C U (see Definition 1.2).

Consider first the case when p > 2 and we can find a domain Q D D, with
u n aQ D U n aD, and such that there exist Cm domains Qi, which increase

to Q, and such that in some Cm coordinate system,

aQi n {(x, y): I < r,, 1y1 < soro} - {(x, oi(x)); IxI < ro},

where Xie C~, ca 0 uniformly, Vi -> V in LP when p < ac, and almost
everywhere when p =a, and I I Voi I I p Cl I V0 I I P. Let q = 2 - 2/p, and let
f be any nonnegative, continuous function, with supp f c A W ln AD,

f q' da = 1. Since continuous functions are resolutive and Q z D,
AD

a)(f)= |dad-yo < f IdahoxaD A
Let G be a continuous function on Rm, supp G c W, such that GIQ = f.

Because Hf = limiO. HQG (see [1], page 100), we see that fdoo=

limi O. G dcoo, where Ai W n aQi. Therefore, to establish a) it is enough

to show that

limi| G doxo ?C.

Let ki = doto/dai, where ai = surface measure of M?i. By H6lder's inequality,

Ai Gd4t ? A G 'di)( ki da)

Obviously, limia, . Gq'du= f q'da = 1. On the other hand, by Lemma 2.2Ai A
applied to Qi (if 1/s + q/2 1), we see that

i kq(l + I Voi 12)-q/4(1 + IV si 12)q/4 dai

< (, ki2(I + I Voi 2)-1/2 d)( (1 + IVo 12)qs/4da7 )1/2 < C
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THE DIRICHLET PROBLEM 377
since (q/4)s + 1/2= p/2. Thus, part a) follows in this case. The general
case for p > 2 follows from this case, because if CQ = {(x, y): IxI < ro, IyI <
sor,, y < (x)}, Q satisfies all the required properties, except that it is un-
bounded, and the Qi are also unbounded. However, we can return to the
bounded case by picking an R e Q\ W and inverting by the Kelvin transform
K(X) = (X - R)/ X - R 12. The change of variables given by K transforms
the operator 2 to another one of the same kind, and hence our result follows

from the previous case.
For p = 2, we need only check absolute continuity. Suppose that

E c AD w, a(E)- 0, and E is closed. For any s > 0 there is a continuous
function f, 0 ? f ? 1, supported in W n AD, such that f 1 on E and
a(suppf) ? S.

The following formal argument can be justified by the limiting procedure

above.

(0(E) ? fdw f- k(l + IV0 12)1/2 dx < (f fk2dx) (| f(1 + IV012)dx)

C C (f (1 + IV 12) dx) = o(1) as s > 0.

Part b) follows in a very similar manner. We can assume A Ar
{(x, O(x)), [xl < r} with 2r < r. Let Z, = (0, 2s0r), and W {(x, y); IxI <
(3/2)r, I y I < (3/2)s0r}. The required estimate follows immediately from the

two estimates:

(1) k(Q) ? Ck,(Q)(o(Ar) almost everywhere Q e A,., where k,= d(o!
da

(2) |k2rdu < CZ
(1) follows as in Hunt-Wheeden [10] (see [3] for the analogue of (1) for

elliptic operators 2 = Dijaiaijaj, aij merely bounded and measurable).
(2) follows if we argue exactly as in part a), but replace Lemma 2.2 by

Lemma 2.3.

(c) For p = A, a < 0 follows from b) by an argument due to Gehring
([9]). Assume that D is differentiable almost everywhere and LP, for some
p, 1 ? p < Ao. Again, it is enough to show that if W is as in part a), and

Ec wO AD, Eclosed, @(E) = 0, then v(E) = 0. Since v(E) = |_(1 + I Vs l2)1/2 dx,

where E = {x C Rm'-; (x, O(x)) e E}, it is enough to show that I El 0. Let
s > 0 be given, and by Lemma 2.4, choose a closed set F c {x C R"-1; I x I <
ro} = B,0 with BBr0\FI < e, and an L- function 1, with < 1 K soro, and
f-=+1r on F. Let -{(x, y); Ixl < o, Iy < soro, y > A(x)}. Then, Q is a
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378 D. S. JERISON AND C. E. KENIG

Lipschitz domain, and Q c D. Let E, - {(x, O(x)); x e E n F}. Then, E1 c E,
E1 is closed, and E1 c m2 na D. Since E1 is closed, XE1 is resolutive, and so,
for Xe Q?, 4(E) ( ao(E) = 0. Thus, by the case p :- of part c),
UQ(E1) = 0, and hence, E fn Fl = 0. But then, IEI < lBr0\FI <ea, and since
s > 0 is arbitrary, c) follows.

COROLLARY. If D is an L"1- l domain, then harmonic measure and sur-
face measure are mutually absolutely continuous.

This follows from Theorem 3.1 and the following theorem of E. M. Stein

([16]). Let n = =m-1.

THEOREM. If 0 is defined on RX, and V? e LD'1, then 0 is continuous and

differentiable almost everywhere.

Notice that this implies that if Vs0 e LP, p > n, then b is continuous and

differentiable almost everywhere (see, for example, [15], Theorem 1 page
242).

Section 4

In this section, we turn to the boundary behavior of solutions of 2u 0 0

in bounded LP domains, which are differentiable almost everywhere. We
also treat the Dirichlet problem, with boundary data on Lr(du), r sufficiently
large, for such domains.

We begin with several definitions. By a cone, we mean a circular, open,
possibly truncated cone, which is convex. Let D be a domain, Q E AD, a cone
F, with vertex at Q, is called a non-tangentical cone, if there is a cone rF,

with r - {Q} cF r c D. A function u is said to have a non-tangential limit
L at Q e aD if u(X) -- L as X -> Q, for x e r, for all non-tangential cones r

with vertex at Q. A function u is said to be non-tangentially bounded at
Q e aD if there exists a constant M and a non-tangential cone r, with vertex

at Q such that I u(X) < M, for all x e r. Analogously we define non-
tangentially bounded from above (or below) at Q0.

We observe that if D c D, Q e aD a AD, and both D and D are differenti-

able at Q, with a common tangent plane, then, if r is a cone with vertex at

Q, and non-tangential with respect to D, it is non-tangential with respect
to D, provided the diameter of r is sufficiently small.

Assume now that D is a bounded Lipschitz domain, and to each Q e AD

there is associated a cone r(Q), with vertex Q. {r(Q)} is a regular family of
cones, if we can partition aD into finitely many subsets Fj, such that to
each Fj, there are cones r1, r2, r3, with vertex at 0, such that for Q e Fj,

we have
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THE DIRICHLET PROBLEM 379
rl + QcF(Q)cy + QcF3 + QcD, where v =F2-{0} .

For any function u on D, and {r(Q)} a regular family of cones, we define the
non-tangential maximal function of u, N(u)(Q) = supxeF(Q) Iu(X) I.

THEOREM 4.1. Assume that D is a bounded Lipschitz domain in Rm.

a) If fe Lv(du), p > 2, there exists a function u in D, satisfying
2u = 0, with non-tangential maximal function N(u) in Lv(du), and such
that u converges non-tangentially to f at almost every (do) boundary point

Q.

b) Assume E c AD, and u is a function defined on D, such that ?2u = O0
and u is non-tangentially bounded from below at every Q e E. Then, u has
a finite non-tangential limit at almost every (do) point of E.

Proof. a) By Theorem 3.1 a), fe L1(dav). Let u = fdoX = Hf(X).
AD

Also, let Mf(Q) = supQs A (1/t(A)) A I f I do, where A denotes a surface ball.

Arguing as in Hunt-Wheeden (i0o]), we see that N(u)(Q) < CMf(Q). (See
[3] for the proof of this estimate in the case when 2 = Ili j ajaijaj, aij merely
bounded and measurable.) Theorem 3.1 b) shows that du e A2(do) ([5]).
The weighted norm inequality of Muckenhoupt (see [5]) shows that

(| (Mf)v do) ? if I do), p _ 2. Thus, N(u) e L"(du). The non-
tangential convergence is deduced from this fact in a standard manner, if
we remember that the result holds when f e C(QD).

b) As is well known (see [8] and [10]), b) can be deduced from a) by
standard arguments. The main lemma needed is

LEMMA 4.2. Let D be an L' domain that is differentiable almost every-

where. For any harmonic function u non-tangentially bounded from below

on a subset E c AD, there exist star-shaped Lipschitz domains {Di}1=, such
that u is bounded on Di. Di and D have the same tangent plane at almost
every (do) on E n aD and o(E\Ui ADS) = 0.

Lemma 4.2 follows from a combination of arguments in [8] and [10].
This lemma reduces part b) to the case where u is bounded and D is star-
shaped. A weak-star compactness argument shows that u = Hf. for some
f e LX, and thus the result follows from a).

Arguing as in part b), one can also obtain (see [8]):

THEOREM 4.3. Assume D is a bounded domain in Rm and E c AD is such

that to each Q e E there is a cone v(Q) with vertex at Q, such that v(Q) c CD.
Let u verify Lu = 0 in D, and suppose that u is non-tangentially bounded
from below at every point Q e E. Then, u has a finite non-tangential limit
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380 D. S. JERISON AND C. E. KENIG

at all points Q e E, except for a set of vanishing (m - l)-dimensional
Hausdorff measure.

Our last result is the following:

THEOREM 4.4. Let D be a bounded LI domain, p > 1, differentiable
almost everywhere.

a) If 2, = 0, and u is non-tangentially bounded from below onE c AD,
then u has a finite non-tangential limit at almost every (do) point in E.

b) If f e Ll(doi), then u Hf satisfies Au = 0, and u converges non-
tangentially to f for almost every (du) boundary point of D.

In particular, if D is an LI' domain, differentiable almost everywhere,

with p > 2, and f e Ll'(dq), l/q' + 1/q = 1, q = 2 - 2/p, then f e L1(dao), and
u = Hf satisfies 2u = 0, and u converges non-tangentially almost every-
where du to f.

Proof. a) is a particular case of Theorem 4.3. For b), we can assume
f > 0 and thus u > 0. By part a), u has a finite non-tangential limit at
almost every (du) point in WD. Our task is to show that this limit equals f
almost everywhere (du).

Consider the domains Di from Lemma 4.2 for E = aD. We have only to
show that for almost every (du) point in &Di n aD, u converges non-tangen-

tially to f. Let E, = ai n0 a, and let v be the harmonic extension to Di of
f.* XE. Let M, be a bound for u in Di, and define w on Di to be the harmonic

extension of g, where g equals f on E,, and M, on ai)\E,. Note that since
f e Ll(da), f XE is in L'(daD,) and so is g. Also, the fact that f is resolutive
easily implies that v ? u ? w on Di. Moreover, the estimate N(w) ? M(g)
on Di implies that for g e L'(daD,), w = Hg converges non-tangentially
almost everywhere (da,) to g. By the analogous statement for v and f *%Ei,
we obtain the desired result for u.

Even though Theorem 4.4 is valid for LI domains, p > m - 1, or Lu"'
domains, these domains need not be regular.

PROPOSITION 4.5. a) If m n 3, then every Ap domain is regular for
, > 0.

b) If m > 4, then a domain given locally by the graph of functions in
Lip (h(log (1/h))l/m-3) is regular.

c) The exponent 1/(m - 3) in b) is sharp. Regularity fails for the
domain below the graph of 0(x) = IxI(log1/IxI)as, a > 1/(m - 3).

Recall that if p > 2, Lf(R2) c Ap(R2) for some A > 0 ([15]). It follows
from 4.5 a) that when m = 3, every LI' domain is regular for p > 2. How-
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THE DIRICHLET PROBLEM 381
ever, LI,' domains in R3 need not be regular. For example, the spine of
Lebesgue, that is the domain below the graph of O(x) = (log 1/l x I)-' is not
regular. Moreover, the domain in 4.5 c) is an LP domain in Rm, m > 4, for
all p < oo, for which regularity fails.

The proposition is an application of Wiener's test ([17]), which we will

now state. Denote N(x) = x IX2-, m > 3. The capacity of a compact set K
in Rm is given by

(4.6) C(K) = sup {1ei(K) I f is a positive Borel measure and
*N(x) ? 1 for x e K}.

Alternatively (see [4]),

(4.7) e(K) = inf {r(K) I p is a positive Borel measure and
p * N(x) > 1 for all x e K} .

A point Q e AD is regular if Hf is continuous at Q for all continuous functions
f on AD. Let Ak = (P(Q, 2-k)\B(Q, 2k1)) n CD. Wiener's test says that Q
is a regular point if and only if E' e(Ak)2k(--') diverges.

Let R {(x, y)Ix eR R-', yeR, lxi < r, IYI < Mr}. If we use 4.6 and
4.7 and the test measure It = CXR, it is easy to see that for r < 1, M > 1,

,Mrn-2, m > 4(4.8) C(R) lM
Proposition 4.5 follows from a routine calculation using the Wiener test and
4.8.

Finally, let us remark that one can recapture regularity for m ? 4 in

Zygmund domains, that is, domains given locally as the graphs of functions
in A1, the Zygmund class. In particular, since BMO, c A1, BMO1 domains are
regular. In this context one can also estimate the non-tangential maximal
function (see [12]).
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