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We report a study of the relaxation process of Bak-Tang-Wiesenfeld’s sand pile under uniform in-
itial conditions. For most geometries and initial conditions the final states consist of intricate
geometric patterns, some of which are self-similar. Even without randomness, the flow of sand dur-
ing relaxation often displays 1/f behavior, and this arises from interactions between the diffusive

flow and the development of the final pattern.

I. INTRODUCTION

A wide variety of natural objects are fractals, which
means that they look the same under different length
scales. Some examples are coastlines, cloud formations,
mountain ranges, and distribution of galaxies in the
universe.! In an analogous situation, many dynamical
systems exhibit scale invariance in the time domain. For
example, the occurrence of earthquarks follows a seem-
ingly random time sequence, but the sequence looks sta-
tistically similar under different time scales. The frequen-
cy spectrum of such a sequence rises in the low-frequency
end. Other examples of this so-called 1/f fluctuation are
found in sun-spot activities, traffic flow, the flow of sand
in an hour glass, and the flow of electric current through
a resistor.?

The close analogy between spatial and temporal scale
invariance leads one to ask whether the two phenomena
may evolve from a common origin. A link between the
two was proposed recently by Bak, Tang, and Wiesen-
feld*~°> (BTW) in terms of a concept called “self-
organized criticality.” They argued that dynamical sys-
tems with extended degrees of freedom naturally develop
into a critical state without detailed specification of the
initial conditions. Perturbations of these critical states
result in changes in the system which show both spatial
and temporal scaling, suggesting that there is an intimate
connection between the two phenomena. As a concrete
example, BTW studied a cellular automaton model for
sand in a box. The model is based on the observation
that a pile of sand will collapse once its slope exceeds a
critical value. A critical state may be created in two
ways, by dropping sand randomly in an empty box and
letting the pile relax whenever the local slope exceeds the
critical value, or by relaxing a random pile for which the
local slope at every point is above critical.

In this paper we report a series of studies of the relaxa-
tion process of the same model under deterministic con-
ditions, namely uniform, but above critical initial slopes.
Despite the lack of randomness, the relaxation process
exhibits 1/f behavior under a variety of circumstances.
The fully relaxed states often have complex distributions
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of slopes, and some of the patterns are self-similar. The
temporal scaling is intimately linked to the growth of the
spatial pattern. This demonstrates for the first time that
1/f fluctuations can be the result of diffusion through
self-generated complex patterns.

II. SAND-PILE MODEL

To define the model we erect a regular lattice in a D-
dimensional space and associate a scale Z (R;) with every
lattice point R,. If m denotes the number of nearest
neighbors of every lattice point, then the following rules
define the dynamics of the model: (i) if Z(R;)<m, the
point R, is said to be stable and Z(R,;) remains un-
changed; and (ii) if Z(R;)> m, we redistribute Z accord-
ing to

Z(R,)—>Z(R)—m ,
Z(R,+8,)>Z(R,+8,)+1,

(1)

where §; for i =1,2, ..., m denote the set of vectors link-
ing a lattice point to its nearest neighbors. In the event
that many sites have Z > m, all are relaxed simultaneous-
ly. This is a cellular automaton for which the discrete
variables Z (R,) at time ¢+ 1 depend on the Z’s at R; and
all of its neighbors at time ¢. The variable Z is not con-
served at boundary sites, as one unit of Z can be lost for
every nearest-neighbor site outside the boundary. This is
defined as the “closed boundary” by BTW.>¢

The physical meaning of the model is obvious when
one considers the one-dimensional (1D) case. The vari-
able Z is the local slope of a discretized sand pile, and
m=2 is the critical slope. When extended to higher di-
mensions, the meaning of Z is less tangible. Strictly
speaking the local slope for two- or three-dimensional
sand piles is a vector quantity, but is represented by a
scalar in the model. On the other hand, if one regards Z
as a local charge distribution, the model may be a reason-
able simulation of the flow of charges in a fast-ion con-
ductor.” Similarly, it may also be a crude model of the
flow of fluxoids in type-II superconductors above the flux
lattice melting temperature.® For these reasons, the
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model is of interest in condensed-matter physics. In the
subsequent discussion we will continue to refer to Z as
the “slope.”

If one starts with a distribution of slope such that every
lattice points has Z >>m, the rules of redistribution map
exactly onto the diffusion equation. Because Z is dissi-
pated by flowing out of the boundary, the slopes at some
points eventually reach m or below and the diffusion
through those sites is temporarily halted. This intro-
duces nonlinearity into the system and gives rise to
numerous interesting geometric and dynamic properties.
The self-organized critical cluster in the original work of
BTW was constructed by starting with a random distri-
bution of Z, all greater than m, and applying the rules in
Eq. (1) until every point became stable. The resulting
clusters appear random, but when disturbed, the time it
takes for the perturbation to spread out is linked to the
size of the region in which the disturbance is felt. In this
manner a relation is established between spatial and tem-
poral scaling.

In our studies we start with uniform initial distribu-
tions of Z =Z, > m at every lattice point and investigate
the geometric properties of the final distribution and the
dynamics of the relaxation process. While it is intuitively
obvious that the flow of slope out of the boundary will
eventually cause the process to stop, it is difficult to make
this idea precise. The following simple argument pro-
vides a proof that the relaxation terminates in a finite
time. We define the second moment of the distribution of
Z by

M= Z(R))IR,?, (2)
!

and calculate the change of M after every iteration. It is
easy to show that for every interior point with Z > m, the
redistribution increases the second moment by m. The
same result holds also for boundary points provided that
we add another layer of points just outside the boundary
to collect all Z’s lost at the boundary. The value of M in-
creases at every iteration as long as there is at least one
unstable point and regardless of whether some Z’s is lost
at the boundary or not. On the other hand, M cannot in-
crease without limit because it has an absolute upper
bound, i.e., the impossible situation where all Z’s are
moved outside the boundary and collected at the corners.
Therefore the process must stop when M ceases to in-
crease, corresponding to the state in which all Z’s are
equal to or less than m. The properties of the final state
will be discussed in Sec. III.

III. GEOMETRY OF RELAXED STATES

The relaxed state is the final distribution of slopes
when the redistribution process stops. The slope at every
lattice point is less than or equal to m. Consider a square
grid with m=4. Starting with an initial distribution
Z,=35, we obtain the final cluster shown in Fig. 1. The
pattern in each quadrant consists of a set of nesting heart
shapes along the diagonal with nonuniform slope inside
and surrounded by regions of uniform slope Z=4. The
ratios of the linear measures of the nearest pair of heart
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FIG. 1. Final slope distribution for a square sand pile with
square grid (m=4) under the initial condition Z,;=35. Only one
quadrant is shown, with the center of the square at the lower
left corner. The values of Z at various points are coded as fol-
lows: 1 by squares, 2 by diamonds, 3 by open circles, and 4 by
open space.

shapes are rational approximations of the irrational quan-
tity @ =(3—V'5)/2, which is the classic Golden Section
ratio. We deduced this result by using a combination of
geometric and empirical reasoning. An outline of the
pattern in one quadrant in shown in Fig. 2. The vertices
on the boundary are denoted by 4,, 4,, 43, etc., those
on the diagonal by 0,0,,0,, etc., and the projections of
points O onto the boundary by B,,B,,B,, etc. We find
empirically that every A point divides the segment be-
tween the pair of B points on either side in approximately
a constant ratio, and every B point divides the segment
between the pair of A points on either side in the same
ratio. This allows us to write for the ideal case of an

FIG. 2. Outline of the pattern in Fig. 1.
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infinite system that
AlBl/BoAlzBlAz/AlBlesz/BlAzz = roL
(3)

We also find that By4,=A,; A, to within one lattice
point for systems of various sizes. Therefore, for an
infinite system we have 1=r +r2. The solution of this
equation is r=(V'5—1)/2, and the scaling ratio is
a=r=(3-V5)/2.

The boundaries of the heart shape around the vertex
on the diagonal are described by the fractional power
parabolas x = Ay* and y = Ax®. The exponent a is
determined empirically to be approximately 1.2. The
boundaries around the other vertices are also given by
these parabolas after suitable rotations of axes.

For larger values of initial slope Z, the final patterns
are more complex, but remain self-similar. The final pat-
tern for Z;=6 is shown in Fig. 3. In general, we obtain
Z,—4 branches of nesting heart shapes in each quadrant.
Spatial scaling is obeyed near the corners. With more
branches the heart shapes are smaller and the scaling ra-
tios are closer to unity. We noticed that for Z,=5 the
vertex of the second largest heart shape at the boundary
coincides within one lattice point with the vertex of the
third largest shape for Z,=26, and with that of the fourth
largest shape for Z,=7, etc. An argument similar to that
in the Z; =5 case allows us to establish the scaling ratio

for general Z, as a”"?*"" The boundaries between
uniform and nonuniform regions are described by the
same fractional power parabolas. We have also studied a
cubic system (m =6) with initial conditions Z,=7, 8, and
9. The cross section of the 3D patterns with the [100]
plane are 2D patterns very similar to those of the square
system. The scaling ratios are given by powers of a and
the boundaries of the nonuniform regions are described
by the same parabolas. The fact that a and « are not sen-
sitive to the spatial dimension implies that they are not
critical exponents.

FIG. 3. First quadrant of the final pattern for a square sand
pile with square grid under the initial condition Z,=6. The Z
values are coded as in Fig. 1.
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FIG. 4. Final slope distribution for a square sand pile with
honeycomb grid (m=3) under the initial condition Z,=4. The
code is 1 represented by squares, 2 by diamonds, and 3 by open
space.

To study the dependence of the geometry on the grid,
we enclose honeycomb (m=3) and triangular (m=6)
grids in square boundaries. The final states have different
patterns, but the scaling ratios and the exponent a are
the same as for the square grid. The pattern for the
honeycomb grid with Z,=4 is shown in Fig. 4.

In Fig. 5 we show a final pattern that is nonfractal.
This is obtained by enclosing a honeycomb grid in an
equilateral triangle with starting slope Z,=4. This pat-
tern maps onto the solution of fitting three largest regular
nanogons within the triangle in that the vertices of the
nanogons on the border coincide within one mesh point
with the corners of the round shapes. It also maps onto a
tiling problem involving regular triangles, nanogons, and
three-pointed six-sided stars. The stars have vertex an-
gles equal to 20°. The outlines of the three kinds of tiles
are shown in Fig. 6. Within each round shape one can

FIG. 5. Final pattern for a triangular sand pile with honey-
comb grid under the initial condition Z,=4. The code is 1
represented by squares, 2 by diamonds, and 3 by open space. It
is difficult to distinguish between 1 and 2 because of the finess of
the grid, but 1 occurs very infrequently.
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FIG. 6. Tiling pattern that is isomorphic to the pattern in
Fig. 5.

discern three regions bounded by the 1.2 power parabo-
las. For higher values of Z, the patterns map onto the
same tiling problem with (Z,—1)(Z;—2)/2 nanogons
within the border. For a triangular grid inside the same
equilateral triangular boundary the patterns depend on
whether Z, is odd or even. Odd values of Z; produce
patterns isomorphic to those obtained on the honeycomb
lattice, whereas even values of Z; produce simple check-

erboard patterns with triangular regions of uniform Z=4
and 6.

FIG. 7. Final slope distribution for a diamond shaped sand
pile with triangular lattice (m=6) under the initial condition
Z,=8. The grid is too fine to allow clear resolution of Z values
in the final state, so we coded all points with Z <6 by black dots
and Z=6 by open space. This gives a clear picture of the
nonuniform part of the final pattern.
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Regions bounded by obtuse angles give rise to complex
patterns that cannot be described by a constant scaling
ratio. As an example, we show in Fig. 7 the final pattern
obtained for a triangular grid in a diamond shaped
boundary with Z,=8. The equilateral triangles of vari-
ous sizes are all regions of uniform Z=4. The pattern
appears increasingly more complex as one approaches the
120° corners, and this is a clear indication of the break-
down of uniform scaling. From a large number of pat-
terns we have gathered so far, we find uniform scaling
only in regions bounded by right angles.

IV. DYNAMIC PROPERTIES

As was pointed out earlier, the laws of redistribution in
Eq. (1) map exactly onto the diffusion equation when the
slopes at all points are much higher than the critical
slope m. If one starts with Z;>m, one should find the
classical behavior in the flow of Z during the early stages
of the relaxation process. We have studied this by count-
ing the total Z collected outside the boundary as a func-
tion of time ¢, which is the number of iterations. In-
dependent of Z, the grid and the boundary, we obtain
the total flow to be proportional to z!/? at small ¢ as ex-
pected. Later in the process the flow slows down and in
the square system the total flow takes on a different
power-law dependence with the exponents 0.40, as shown
in Fig. 8. This behavior is known as anomalous diffusion,
and we will show in the following that anomalous
diffusive systems also have the 1/f noise spectrum.

In classical diffusion the total charge Q(¢) is propor-
tional to t!/2. If in a critical system time scales according
to the dynamical scaling exponent z!/%,° then we expect
Q (t)~t1/?* for diffusion in such a system. When a classi-
cal system is driven by a constant external potential, the
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FIG. 8. Total outward flow of Z for a 801X 801 square sand
pile as a function of time ¢, which is measured by the number of
iterations. During the first 1000 steps the total flow follows the
t'/? law, indicating classical diffusion. The insert shows the flow
curve during the last 70000 of the more than 170000 steps, il-
lustrating the t%* law of anomalous diffusion.
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current follows the Ohm’s law and the total charge Q(¢)
is proportional to z. In an analogous situation, a driven
anomalous diffusive system gives Q (t)~t'/% The current
is given by I(t)~t 1712 and its frequency spectrum
given by I(w)~o /%, The power spectrum is propor-
tional to |I (®)|? and thus has the frequency dependence
®~ %% From the result in Fig. 8, we can determine the
frequency exponents 2/z=1.6 for the square system. We
have also studied the cubic system and obtained
2/z =1.0%£.04. Bak, Tang, and Wiesenfeld determined
the frequency exponents by perturbing the self-organized
critical clusters, and they reported the values 1.57 and
1.08 for 2D and 3D systems, respectively.! There is good
agreement between these two different ways of calculat-
ing the frequency exponents.

Examination of the intermediate patterns during the
relaxation process reveals an intimate connection be-
tween anomalous diffusion and the growth of the complex
pattern in the final state. In Fig. 9 we show four inter-

,.
=

a
"

G

W'a,
'ta. 3
B,
e the -
L) .nr %,
oo :,l
L}
f 3
it 41‘ A

=

(c)

mediate patterns for the square system with Z,=5. Very
early in the relaxation process the uniform distribution
breaks down into plane waves with crests of Z=6 and
troughs of Z=4, as shown in Fig. 9(a). A rudimentary
heart shape develops at the corner, and it interacts with
the waves and changes the crest and trough values to 5
and 3. A thin strip of uniform Z=4 separates the front
of the waves from the boundary. As time progresses the
wave front moves toward the boundary, and upon reach-
ing it ejects a pulse of Z. Afterwards the wave front re-
treats toward the center until it reaches the tip of the
heart shape. At this point the motion reverses itself and
the shape grows by one grid point. At a later time,
shown in Fig. 9(b), the shape has grown in size, and
smaller shapes have formed following the wake of the
leading one. The growth of the nonuniform region causes
the width of the wave front to shrink and the distance
traversed by the wave front to lengthen. Consequently,
every time the wave front returns to the boundary, it

FIG. 9. Four intermediate stages of the development of the final pattern in Fig. 1. In addition to the four codes used in Fig. 1, we
need 5 represented by pluses, 6 by crosses, and 7 and 8 by asterisks. The last two values occur infrequently. The number of iterations
are (a) 160, (b) 1320, (c) 2608, and (d) 9690. It required 10 738 iterations to reach the final state.
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ejects a pulse that is two units less than the previous one,
and the interval between successive pulses increases by
two units. The total flow after ¢ iterations is given by

Q=3 [N-2(n—=1)15, . =N (4)

n

for 1 <<t <<N. In Eq. (4) N is the size of the boundary
and n sums over the sequence of pulses. The § function
indicates that the nth pulse emerges at t =n’—n+1. We
identify this contribution as the classical component of
the diffusion process.

As the nonuniform region grows to about one-half of
its final size, shown in Fig. 9(c), we can clearly see waves
flowing toward the boundary in the region between some
of the shapes. The wave fronts make 45° angles with the
boundary. The excess Z in these waves must first flow
through the leading shape, and are ejected at the bound-
ary sporadically. We identify this as the emerging anom-
alous diffusion component. Near the end, shown in Fig.
9(d), the classical diffusion component becomes
insignificant and the anomalous component dominates
the total flow. This sequence of events demonstrates that
the anomalous behavior is due to flows through the
nonuniform part of the intermediate distribution. The
close analogy with the diffusion in random network prob-
lem'® or the ant in the labyrinth problem is quite ap-
parent.!! The only difference is that the system creates
its own labyrinth, and the self-generated structure is a
unique feature of the sand-pile model.

During the growth process the nesting heart shapes
maintain their scaling ratio. This indicates that the ratio
is determined by the angle between the boundary lines
and the value of Z,. The other two boundaries play no
role except to determine the size of the final pattern.

For systems whose adjacent boundaries form only
acute or obtuse angles, the total flow also tends to slow
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down but there is no well-defined exponent for anomalous
diffusion, and thus no clear indication of temporal scal-
ing. The final patterns of these systems do not show con-
stant spatial scaling, so it appears that constant temporal
scaling is associated with the growth of a self-similar pat-
tern.

V. CONCLUSIONS

The states we have studied do not fall into the category
of self-organized critical states because they are clearly
sensitive to the initial condition as well as the boundary
condition. Perturbations on these states do not necessari-
ly generate disturbances that exhibit spatial and temporal
scaling. Our findings demonstrate that large systems
with nonlinear diffusive properties can spontaneous
evolve into complex spatial patterns under completely
deterministic initial conditions. Furthermore, the growth
of the spatial pattern hinders the diffusive flow in such a
way that if the pattern is self-similar in space, the fluctua-
tion in the flow can be self-similar in time. This may shed
new light on the physical origin of the ubiquitous 1/f
noise.
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