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Abstract. Convergence results for discrete solutions of Dirichlet problems for Poisson
equations are obtained, where discrete solutions are constructed for triangular grids using
finite volumes with sides perpendicular to, but not necessarily bisecting, corresponding
edges in underlying triangulations. A method, based on properties of circle packings, is
described for generating triangular meshes and associated volumes. Also, the approximation
of exit probabilities of the Brownian motion by exit probabilities of random walks on circle
packings is discussed.

1. Introduction

This paper originated from our studies of discrete harmonic functions given by circle
packings. Such functions were introduced in [Du3] (see also [Dul]) to deal with the
type problem for random walks on infinite planar graphs and the type problem for circle
packings. Here we are interested in properties of these mappings, in particular, in their
connections with classical harmonic functions and approximation issues.

Through most of this paper we actually work with a larger family of maps than the
class of discrete harmonic functions given by circle packings. This family can briefly
be described as consisting of piecewise affine functions, defined for triangulations in
the plane, that are solutions of systems of linear equations derived from classical Pois-
son equations using finite volumes and integration. Finite volume techniques in solving
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differential equations have been studied in the literature for some time now [BR], [Hn],
[Ha], [Ca], [CMM]. The volumes we introduce here (Section 2) are slightly different
from the ones investigated so far, where it was always assumed (explicitly or implicitly)
that the boundaries of volumes cross edges of underlying triangulations at midpoints.
Instead, we require edges of our volumes to be perpendicular to, but not necessarily to
be bisectors of, the corresponding edges in underlying triangulations. Using this type of
volumes, we show in Section 3 that discrete solutions of Poisson equations satisfy the
maximum principle. Furthermore, we prove convergence of discrete solutions for Dirich-
let problems to the corresponding classical solutions irtherorm (Theorem 3.5) and

the L2-norm (Theorem 3.6) under rather mild restrictions (i.e., regularity) on triangula-
tions and volumes involved in the process of generating discrete solutions.

In Section 4 we show that if triangulations used to construct discrete solutions are
close to being uniform, then discrete solutions will approximate the classical counterparts
uniformly on compact subsets. This result is proved for both continuous and discontin-
uous boundary conditions, however, in the latter case we require some smoothness on
domains involved in Dirichlet problems.

The question of how to generate “good” triangulations and volumes is addressed in
Section 5. There we show that triangulations and volumes induced by circle packings
have all the desired properties, i.e., regularity, provided some combinatorial (but not
geometric) restrictions on tangency patters in circle packings, which, from practical
point of view, are essentially always satisfied (Corollary 5.1).

We also comment on how a Dirichlet problem for a Poisson equation can be pulled
back to a standard domain (e.g., the unit disk) using the discrete Riemann mapping
theorem for circle packings (Theorem 5.2 and Corollary 5.4).

Finally, we prove that random walks induced by circle packings, which were intro-
ducedin [Du3] and [Dul], have a similar behavior to that of Brownian motion by showing
that exit probabilities of a sufficiently dense circle packing filling a domain in the plain
are close to corresponding exit probabilities of Brownian motion in that domain.

2. Triangulations and Volumes

We begin with a description of triangulations and associated volume-triangulations.
SupposeT is a (finite) triangulation of a simply connected domain in the pRRAeWe
denote the set of vertices (nodes), edges, and triangles (facE)yT°, T, andT?,
respectively. We also writd ® anda T for the sets of interior and boundary vertices of
T.We usedT for the (geometric) boundary of the skt Also, the symbok- is used to
denote adjacent elementsTf or in T2,

Now, T* is said to be &olume-triangulatiomf T in R? (i.e., a 2-cell dual triangulation)
if the following holds: for every triangle € T2 there is a unique poirg inside it so that
(1) z can be orthogonaly projected on each sidg ahd (2) ift andt’ are two adjacent
triangles, then the segment, joining z. andz; is perpendicular to and intersects the
common side of andt’. Forz € ITY, V, denotes therolumeassociated witlz, i.e.,
a polygon bounded by edgegz,, z,z,, ..., z,z,, wherety, ..., t, are consecutive
triangles of T with vertexz. If z € 9T?, thenV, is a polygon bounded by edgeg ,
Z %y, 242y, 2ty 2y, - -5 o, 2 2,25 2 Z, WhETEL, . ty are consecutive triangles of
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Fig. 1. A triangulation (solid lines) and an associated volume-triangulation (dashed lines). Two shaded
polygons indicate an interior volume and a boundary volume.

T with vertexz (with t; andty being boundary triangles), argj (respectivelyz ) is
the image point of the orthogonal projectionzgf (respectivelyz,) onto the boundary
edge oft; (respectivelyty) originated atz (see Fig. 1).

The regularity constanty of a triangulationT (see [Ci]) is defined by

. diam(t)
o= ST

where int) is the radius of the inscribed circle baind dianit) is the diameter of. A
large value ob indicates thal has some rather flat triangles. A family of triangulations
{Tn} is said to beegular if there existsr such thabr, < o for all n.

Similarly, we define the regularity constant of a volume-triangulali¢iby

_ diam(t)
T st o

where dist is the distance function. A family of volume-triangulatipfig} is said to be
regularif {T,} is regular andrrx < o* for someo™ > 0 and alln.

For every pait andt’ of neighboring triangles i there is the volum¥~ associated
with their common edgent’: if z andz, are the endpoints dafn t’, thenVi~ is built
of two trianglesAzz,z and Az zz (see Fig. 2(a)). For future references, we remark
that if oy = min{in(Azzvz), iN(Azzyz;)} and{T;} is regular, then there exists
such that

dist(z, z) <o ©)

Pt

for everyt,t’ € T2, t ~ t/, and alln.
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Fig. 2. (a) The volumeVij, and (b) the segmenis andzi*j .

Itis convenient in what follows to use the following notation:far T2, |t| denotes the
area ott; if V; andV;~ are volumes, thepV/;| and| Vi~ | denote their areas, respectively.
Furthermore, i, t' € T2 are adjacent and their common side has the endpairatisd
zj, then we writez;; :=tNt’, zi*j = nZy, pij = Pty Vij = Ve, 121 = 12 — | =
dist(z, z), and|z;“j| = |z — zv| (Fig. 2(b)).

3. Finite Volume Method

In this section we describe a finite volume method. Rebe a domain inRR?. By
HX(Q), 0 < k, we denote the standakdh Sobolev space, i.e., the set of functions
in Q with finite || - k@) norm, [Ulluke) = (X4 1<k Jo ID*UI?dX)Y/2, where D*u
is a weak derivative ofi, and« is a multi-index (for details, see [GT]). We write
Uk = (= Jo ID“Ul?dXx)¥/? for the seminorm inHK(€2). Furthermore, we
defineH*> () := {u : |Ju]lL=() < oo}, where|u||_~ ) denotes the essential supremum
ofuin Q.

We now introduce discrete versions of the above (semi)normd. beta triangulation
of a domain inR?. Denote the set of real-valued functions defined on verticds oy
>9(T), and the set of continuous functions T — R that are linear on eadhe T2
by =1(T). If w € £9(T), then its linear extension is denoted®dye £(T).

We first introduce the following inner product, and discret® and sup-norms in
=0(T): foru, w € T9(T),

U wr = Y u@w@|Vyl,

zeTO
2 .
”u”QT = (U, T,
lUlloo,T = suplu(z)|.

zeTO
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The discreteH! seminorm and norm ix%(T) are defined by

u(z) —u(z)
2 . 2 ) j
uBr = Y (Djw?Vyl,  where Djui= —2 14
zj€eT? 1Zij |
2 . 2 2
lullfs = llullgt + ulg+-

For future reference we make the following observation:
Remark 3.1. |ulf =33, cr:(1Z}1/12i DIu@) — u@)>.

Finally, we extend the definitions of the above discrete (semi)norms to functions
defined inT as follows: ifw: T — R, then|ulleo,t = [[Uollee,T @Nd Ul =
|uiTol1,7, Whereu o is the restriction ofu to the setTY. If w is a subset ofl, then
Ullso.e = SURepnTo [U(2)].

For functions inx(T), the classical and discrete definitionstdt-seminorms are
closely related in the following way (for a proof see, e.g., [BR]):

Proposition 3.2. There exists a constant € C(o7) depending only on the regularity
constanio of T such thatfor u € =1(T),

1
E|U|H1(T) < |uly7 = Clulpae).

We now introduce an operator whose domaitdi&T) U 1(T) U %) and the
range is the space of real-valued functions defined 6Vér If w € H2(T) U TX(T),
then

1

Vel

Arw(z) = — / vyw- 77 ds for zelTO,

aV,
where 77 denotes the outward unit normal vector on the boundafyof V,. If w e
»%(T), then Arw = Arw. We extend the operatokr to Ar: H3(T) U TXT) U
9T) - ZUT) by Arw(2) := Arw(2) if ze IT andArw(z) :=0forz e aTC.

Suppose thaf € L%(T), ¢ € C(dT), andu is the solution to the Dirichlet problem

—Au = finT andu = ¢ ondT. Then the corresponding discrete problem is defined
as follows:

. Arw(z) = f1(2) for zelTO,
. 0 T
find w: T° - R such that {w(z) — 02 for e aTo,

where f1(2) := (1/|Va|) fvz f dx.

Remark 3.3. 1.Noticethatthe discrete problem defined above is modeled on a classical
approach where a solution of the equationu = f isfound by replacing the differential
equation by the integral conditior:(1/|V|) [,,, vu-77 ds= (1/|V]) J,, f dxforevery
subsetv c Q with Lipschitz boundary.
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2. The discrete problem is a linear problem. In generakif®) € RI'T°+9T° then
the discrete Dirichlet problemArw = F in IT® andw = ® ondT?, has the following
explicit formulation:

1 ﬂ(w(z-) —w(z)) = F () for z eIT®
|VZ|| Z~z |ZIJ | 1 ] - 1 | ) (*)
w(2) = ®(2) for zeaTO.

Solutions of the above linear problem have the following important property.

Maximum Principle. If F > 0, then a solutiorw of (x) attains its minimum oA TP,
In particular, if ® > 0,thenw > 0.

Proof. From the equations i) involving interior vertices and the assumption that
F > 0, it follows that if w attains its global minimum at an interior vertex thermust
be constant, in particular, attaining minimum @n°. O

Remark 3.4. 1. From the Maximum Principle one obtains that the linear system of
equationgx) is always uniquely solvable.

2. The above Maximum Principle can also be derived from a probabilistic interpreta-
tion of equationgx) as discussed in the last section of this paper.

The next result gives some estimates on an error between the classical solution of a
Dirichlet problem and its discrete counterpart; the result is essentially due to Cai and
coworkers [Ca], [CMM]. Differences are in the assumptions on families of triangulations
and boundary conditions; we do not require sides of volumés’ito be bisectors of
sides of triangles i, nor do we impose any conditions on angles of triangle$,of
and the boundary of,, does not need to coincide with the boundary of the domain
considered.

Theorem 3.5. Suppose ue H?(Q) is a solution of—Au = f in Q, f € L%(Q).
Let {T,} be a regular family of triangulations with,TC Q andu, — 0as h— oo,
whereun = sup.r, diam(t). Assume thafT;} is the corresponding family of volume-
triangulations of{T,}. Denote by y the discrete solutiarin T, of

Arw(2) = fr.(2), zelT?,
w(z) = u(2), ze T

Then
[U—UnlyT, < CunlUlhzg),

where C is a constant that depends only on the regularity of fanfiligsand{T,"}.

Proof.  Since the proof requires only minor modifications to the one in [CMM], we
outline here the major stefdifferences, and for details the reader is refered to [CMM].
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First, we notice that, fow € £°(T,), one hag Aw, w)t, = |w|3 1, that follows from
direct calculations:

(Aw, w)T, = Z w(zi)<2—/ vﬁ._r,’ds)

ZelTY Z~z V5

|1Zj;
= Z w(z) (Z |T’_|(w(2i) — w(Zj))>
ZelT? z~z 1A
1z
= Z w(z) Z m(w(zi) —w(z))
zeT? z~z '
1Z;
=3 L@ -wz)?=wky,
ZijETnl |Z|]|

Second, because e H?(Q), the Sobolev embedding theorem implies that C($2)
(andu e C(Q) if Q has the exterior cone property (see [Ad] and [GT])). Next, define
€ ‘= U— Uy ande] := u — u}, whereu] := u[to, i.e., U} is the linear interpolant of
un over T,. Then, from the definition of discrete solutions and the factthat u}' on
aT., we obtain

lenlir, = (Aar, &)1, = Z (&n(Zj) — en(z)) (_ / vd“?ds)

zijeTnl ]
| n o\ 1/2
< lenlur, | D == —f ve - 77 ds ,
T2 |Z|J| z
zj €Ty i
that implies
a oY
l€enlyT, < Z m —/* ve' - i ds
ZijETn1 1 Zij

Now, from the regularity of familie§T,} and{T;}, and the property<>), we obtain
(exactly the same way as in Lemma 3 of [CMM])

5/2 1/2 -2
< Clz;j IY21Z; Y2 pij * Ul ey, )

/ vel - 77 ds
.
ij

whereC is a constant depending only on the regularity of fami{ieg and{T}. Hence
1/2

2 4, 12112 2
l€nlyT, = Z C%"z;]| |U|H2(vij) < Co“unlUlhz(q),

Zjj GTnl

whereo is a constant as it¥>). O
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We now investigate thé& ?-convergence of discrete solutions. Supp@ses a Jor-
dan domain an@ is a continuous function oA2. Suppose, further, that there is a
neighborhood2* C Q of Q2 and a method for construction of a continuous function
@ Q°UIQ — R such thatp = ¢ on dQ. (From Tietze's theorem, we know that
such an extension always exists, however, it may be hard to construct it in a manageable
way.) For example, whed2 is C? (i.e., a twice continuously differentiable curve) then
there existg such that when digt, 92) < ¢ then there is a unique poiaj € 92 with
dist(z, zy) = dist(z, 32), andg can be defined by a projection, i.(z) := ¢(z;).

Let f € L?(Q) and letu be the solution of the Dirichlet problem

—Au=f in Q,
{u =¢ onos2. )

If T is a triangulation with the boundary as a Jordan curve Tamd R, 8T C Q° U J,
and there is an associated volume-triangulalidhthen we define the corresponding
approximate solutionr of the above continuous problem by
Arur(2) = fr(z9  for zelTO,
_ 0 (%)
ut(2) = ¢(2 for zeaT?,

i.e., the system of equatiosx) is just a generalization of the earlier definition to a case
where the boundary of does not coincide with that 2.

The following result addresses a question ofltReconvergence of discrete solutions
to the classical one.

Theorem 3.6. Let Q be a Jordan domain with &boundary ¢ € C(3R), and f e
L2(R). Supposes is a continuous extension gf to an inside neighborhood Q2.
Denote by u the solution to the Dirichlet problgs). Assume thatT,} is a family of
triangulations such thafor each n T,, is simply connected,, € Q, T, — Qasn— oo
(i.e., sets T, exhaust?), and u, — 0, whereuy, is the mesh size of,TSupposgfurther,
that{T;} is an associated family of volume-triangulatiomndich is regularFor each n
let u, be the discrete solution @) in T,. Thenlim,_,« U — Uyl 2T,y = O.

Before we give a proof, we make a few remarks.

Remark 3.7. 1. The above result is true for any Jordan domain, not necessarily with
aC?-boundary. By adopting techniques used in the next section together with the proof
below one can give a proof of the general case. However, it should be noted #tat as
gets more bizarre, it is much harder to get a good construction for an extensigh map
2. The above result can also be extended to Dirichlet problems for nonsimply con-
nected domains.
3. The sequence of maps is bounded by the Maximum Principle. We conjecture
that it is in fact a locally equicontinuous family of mappings. If this is true thar
forms a normal family, and hence thg's converge uniformly on compacta 6f to
some continuous functioi. Then it would follow from the above theorem thiamust
be equal tay, i.e.,u, — u uniformly on compact subsets ©f.
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Proof of Theoren8.6. Lete > 0 and letyy € C*(3Q2) such thatly — ¢|c.o < €.
Write G for the solution of(x) with boundary conditiony. Denote byd\ the linear
interpolant ofii in Ty, i.e.,0} := GTTEJ Also, denote by, the solution of(xx) in T, with
boundary conditiom o. Then

lU—UnllL2er, < IU=0ll2er,) +1G=0" 12, + 107 = 0nll2er,) + 10— UnllL2er)- (D)

We are going to give estimates on terms on the right-hand side of the above inequality.
The smoothness assumptionsdgaandy imply [GT, Theorem. 8.12] thal € H?(Q).

Recall that if a functiorw € H1(2) is such thaiw s = 0, then the following Poincar”
inequality [GT] holds:

Q 1/2
lwllLz@) < <7 [w|H1(g)- 2

Becausdi] — 0, = 0 ondT,, from the Poinca ineqality, Theorem 3.5, and Proposi-

tion 3.2, it follows that
TN\ - QN .
(—n |G} — Onlner,) <C — |G} — TnlncT,)

IA

-
[1G} — OnllLzery -

12
12| N
<C <— nlllH2(e)-
b

Sinced is C?, we get [GT, Theorem 9.30] that G € C(Q). Asu — G is a harmonic
function, we obtain thal — U] o < |U — U|x.a0 < €. Thus

lu =Gz, < lu—1Ulzg < |2le. ©)
The definitions ofli,, and u, together with the fact thau — G| < e imply that
|Gn — Unles.am, < 2e for all largen. By applying the Maximum Principle to discrete
solutionstiy anduy,, we obtain thatl, — uUn|s T, < € for all largen. Hence
G0 — UnllLzer,) < 2¢1€2, 4)
for largen. Finally, fromd € H?(Q) it follows [Ca, Theorems 3.1.6 and 3.2.1] that

lim [[G— @0l L2r,) = O. (5)
n—oo

Thus, by combining (1)—(5) we obtain the assertion of the theorem. O

4. L*-Convergence

In this section we show that, under some additional conditions on families of trian-
gulations involved in the construction of discrete solutions, we obtain convergence in
sup-norm on compact subsets.
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Let {Tn} and{T;} be regular families of triangulations and volume-triangulations.
Throughout this section we assume in addition %@ is quasi-uniform i.e., there
exists a constant such that

Sup.t, diam(t) -
infte'rn dlam(t) -

for everyn (see [Ci]). As in the previous section, suppdsés a Jordan domainf €
L2(R), andy € C(R). We assume that we also have a continuous gndgfined inside
Q in some neighborhood @f2, which is an extension af. Letu be the solution ofx).
We denote by, the discrete solution of«x) for T := T,. Then the main result is the
following theorem.

)

Theorem 4.1. If {T,} and{T,"} are regular families of triangulations and associated
volume-triangulations{T,} is quasi-uniformthe sets T exhaust from inside and
Un = SUR.t, diamt) — O, then the sequence of maps converges uniformly on
compact subsets 6f to u.

Remark 4.2. 1. As we have pointed out in Remark 3.7, we believe that the conclusion
of the theorem is true without quasi-uniform condition{dr}. We hope to resolve this
issue in a sequel.

2. There are related results that address the convergence in sup-norm in Chapter 3.3
of [Ci] and in [HNn]. The main differences are that the boundarie3¢f are not that
rigorously associated withQ2 here as they are in [Ci] and [Hn], and the volumes here
are different from the ones in [Hn]. This allows for consideration of a broader class of
domains but yields loss in estimates for the rate of convergence.

The proof of Theorem 4.1 is given in a sequence of lemmas, where the assertion of
the theorem is first proved faZ?-domains and then the general case is split into two
parts: the case of harmonic solutions and the case with zero boundary condition.

Lemma4.3. Suppose? is a C>-domain f € L?(Q), andg € C(RQ). Then under the
assumptions of Theorefnl, ||u — Up||c.T, — O.

Proof. Lete > 0, and lety® € C(R?) be such thallp — ¢°||L~@q) < &. Defineu® to
be the solution ofx) with boundary conditio®. Then, sinces® € C(R?), it follows
[GT, Theorem 8.12] that® € H?(2) NC(Q). Let ué be the discrete solution ¢fx) in
T, for boundary conditionié (z) = u®(2), z € 9T 2. By applying the Maximum Principle
to the discrete solutions, andu;,, and to the classical solutionsandu®, we obtain the
following inequalities:

U—=UnllooT, < IlU—UllooT, + U = Uflleo.T, + UL — Unlloo,T,
< lu—=U¥lLx@ + IIU° = uglleo,T, + UL = Unlloo.aT,
= [l — ¢°llLxee) + IIU° — Upllco,T, + Uy — Unlloo.aT,
< e+ IV = UpllooT, + 110" — @llooaT, -
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Since ¢ is a continuous extension @f, anddT, — 9Q asn — oo, we get that
My 1@ — ¢°llo.0m, < 2¢. TO give an estimate on the tern® — U |l 1, we need

the following result which is due to Oganesyan nad Rukhovets [OR, pp. 74-77]: there
exists a constanf® = C(o), depending only omr, such that, for every triangulation

T that is regular and quasi-uniform with corresponding constants no bigger tnad
everyw € Z1(T) with w;r = 0, we have|w|| =) < C|log ut|Y?|w]nir), where

WUt = sup.r diam(t). Now, from Theorem 3.5, the Poinesiriequality, Proposition 3.2,

and the above result, we obtain

. Dy~
IU* = Ulleom, = lIUfro — UpllL=cr,) < Cllog pun / IUfro = Unllhecr,)
1/27& e ~ 1/2
< C'llog un|"?|U e — Upluxcr, < Cllogpunl*?|u® — uglLr,

< Cl1og inl21n|Uf [z,

whereC, C’, C, andC’ are just constants independenuéfor the mesh size oF,. Thus
My o0 [[US — UG oo, T, = 0. Hence lim_, « [lU — Unlleo,1, < 3¢, and ase is arbitrary,
this completes the proof. O

We now look into the harmonic part of the solution

Lemma 4.4. Suppose&? is a Jordan domainf = 0,andg € C(2). Then under the
assumptions of Theorefnl, |u — Up||so.T, — O.

Proof. Denote byr: Q@ — D a Riemann mapping, whebeis the unit disk. Le{<2.} be
a sequence dt? Jordan domains such th@tc Q,, Q. C Q. fore’ < ¢, N =9,
and the boundary of2, converges td<2 in the sense of echet (see p. 27 of [LV]
and [Wa]) ase — 0. We definer,: Q. — D to be the Riemann mapping such that
1.(t~1(0)) = 0 andr,(r~*(3)) > 0. Thenr, — 7 uniformly in Q (see [Wa] or [Du2]),
and hence ' o 7, — id uniformly in .

Letu* == uotlor : Q — R.ThenAw = 0in Q,, U* € H3(Q), and
lu — UE|||_°C(§2) — O ase — 0.

Let u;, be the discrete solution @) in T, with fr, = 0 and boundary condition
ué(z) = u(2) for z € 9T2. Using the Maximum Principle we obtain the following
estimates:

lU—Unlleo, T, < lU—=U"ll0o,T, + U = Uflloo,T, + IUR — Unlloo,T,
< U= U1, + IU° = U lloo,T, + UL — Unlloo,aT,
< lu—W¥lLen) + U — Ui lloo,T, + UG — U¥lloo,aT,
+ [lU° — Ulloo,0T, + U — Unlloo 0T,
< 2|lu — U¥|lLx@e) + 2lU® — Uglloo,T, + U = Unlloo,aT, -

Let § > 0. Recall thatp is a continuous extension @f neard2. Henceg — u is a
continuous function in some neighborhoodagt, inside ofQ2, andg — u = 0 ona <.
Hence, there is some neighborhood & such that, for any poirtin this neighborhood,
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|¢(2) — u(z)| < 8. Therefore, from the boundary condition ag's it follows that, for
all sufficiently largen, ||u — Un]leo.5T, < 28. Next, we choose; to be small enough so
that|u® — u|lL=@se) < &, this is guaranted by the fact thii — u[| ~g, — 0. Then
Lemma 4.2 and the fact thag,, is C2 imply that limy_. « [|U® — U ||«.1, = 0. Hence
we obtain that lim_, « [|[U — Uplleo.T, < 58. O

In the next result we deal with the case of homogeneous boundary data.

Lemma 4.5. Suppose? is a Jordan domainf € L?(Q), andg = 0. Then under the
assumptions of Theorefnl,u, — u uniformly on compacta Gg.

Proof. Let {Q} and{Q2,} be sequences &2 Jordan domains such thet Qr,
Qf cQffore’ <o, NQF=Q,andQ > Q, Q. D Q; fore’ <, JQ, = Q.
Denote by f the extension off which is 0 inR?\Q. We write u‘* for the solution
—AUt = fin QF andut = 0 ondQ;. Similarly, we denote by~ the solution
—AU” = finQ; andu*™ =00naQ; .

We also introduce the corresponding discrete solutions as followsutttebe the
solution of(xx) in T, with boundary conditiont* (z) = u¢*(z) for z € 3T,?. Denote by
Th,e the “intersection” ofT,, with Q7 , i.e., the largest part af, contained ir2; which is
still a triangulation of a simply connected domain. Therufet be the solution ofsx)
in T, . with boundary conditiom;~(z) = O forz € 8Tn(?£.

Suppose first that & f. By applying the Maximum Principle to classical solutions
we get

u<ut ing, and U <u inQ;.
Similarly, in the discrete setting we have
Un(2) < Uuit(z) for ze TP, and U (2 <un(2) for zeT2; (O

to obtain the first inequality above, we have used that u** in © andué* = u+ on
aTY.

Since{u®~} is an increasing sequence of functionseasy 0, andu®~ — u are
harmonic, from Harnack’s theorem we get th&t — u uniformly on compact subsets
of Q. Similarly, as{u¢™} is a decreasing sequence of functiong ag 0, andu — u®*
are harmonic, we obtain that™ — u uniformly on compacta of2.

From Lemma 4.3, we have that, for a fixed|[u*™ — Uy [l o — 0 asn — oo.
Also from Lemma 4.3, the fact that, for a fixedu®* € H2(Q), and thaugt = u®* on
dTO, we obtain that lim_ o [U*T — U5t ||le.1, = O.

Now, letw be a compact subset@fand lets > 0. If nis large enough so that c T,
then from(t) we have

Un(2) > up, (2) = (U (2 — U (2) + (U (2) — u(2) + u(2)

and

Un(2) < U7 (2) = (U5 (2) — U (2)) + (U (2) — u(2) + u(2),
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for everyz € w N T2. By choosing firsts so that||u®~ — u| =, < § and|[u®~ —
Ull =@ < &, and thenN = N(8, ;) large enough so that, for all > N, [[u*~(z) —
UP~ (D llo,w < 8 ANd[USF(2) — Up ™ (2)lloc,0 < 8, We get

lu—Unllcow < 28 forall n> N.

Sincew ands are arbitrary, this shows that, — u uniformly on compact subsets &f
in the case wherf > 0. By symmetry, the same is true fér< 0, and the general case
follows. O

We can now prove Theorem 4.1.

Proof of Theorend.1. Letu" be the solution ofx) for f = 0, and leu° be the solution
of (x) for ¢ = 0. From the uniqueness of solutions it follows that u" + u®.

The same is true for discrete solutionsullfdenotes the solution dfx) for f = 0,
andu? denotes the solution @kx) for ¢ = 0, thenu, = ul 4-ug. Now, the convergence
Un — uis an immediate consequence of Lemmas 4.3 and 4.4. O

Theorem 4.1 can, of course, be extended to include discontinuous boundary condi-
tions. However, as more general cases are considered, it is getting much harder to define
in a “practical” way boundary conditions for discrete solutions. We finish this section
with a result related to discontinuous boundary conditions, which is applied in the next
section.

Example 4.6. Suppose2 is aC2 Jordan domainf € L%(Q2), andy = x,, wherey is
anarcinoQ andy,: a2 — {0, 1} is the characteristic function ¢f(i.e., x, (2) is equal
to 1if z € y and 0 otherwise). Denote lhythe solution of(x) with the above data. Let
{Tn} and{T,’} be as in Theorem 4.1. Writs, for the discrete solution af«x) in T, with
the boundary condition,(z) = x,(z), Z € 8Tn°, wherez — z; is the projection of
8T to 32 defined earlier foC2-domains. Them, — u uniformly on compact subsets
of Q.

Proof. The proof is similar to that of Lemma 4.4. Let™, ¢~ € C(3€2) be such that
¢°~ < x, < ¢, and the linear measure of s¢tsc 92 : |p*(2) — x, (2| + |¢° (2) —
Xy (2)| > 0} goes to 0 as — 0. In other wordsy®* andy®~ are two continuous “step”
functions ond 2 that approximatey, from above and below, respectively.

We definau®™ to be the solution ot Aus™ = f in Q andutt = ¢*t ona . Similarly,
we write ué~ for the solution of-Au®~ = f in Q andu®~ = ¢~ ondQ. Then, from
Harnak’s theorem, it follows that*+ — u andu?~ — u uniformly on compact subsets
of Q ase — 0.

Now letust andué~ be corresponding discrete solutionge#) in T, with boundary
conditionsust = ¢** on dT? andu™ = ¢*~ on dTY, respectively. Then, from the
Maximum Principle for discrete solutions, we obtain

Un(2) > Uy (2 = (U (2 — U () + (U (2) — u(2) + u(2
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and
Un(2) < U5T(2) = (U5T(2) — u*H(2) + (U (2) — u(2)) 4+ u(2),

for z e TC. Asin the proof of Lemma 4.5, it now follows from the above inequalities and
convergence of their terms in brackets to 0 on compact subsets, that, for every compact
subset of 2, U — Un|leo.o — 0 asn — co. O

5. Circle Packings and Random Walks

As we mentioned in the Introduction, this paper was motivated by the results in [Dul]
and [Du3], where discrete harmonic functions for circle packings were introduced. In
this section we discuss connections among circle packings, volume-triangulations, and
random walks. We show how to generate triangulations and associate with them volumes
for domain approximation by means of circle packings. We also describe how a Dirichlet
problem from a reasonable domain can be pulled back to a standard domain, such as the
unit disk, using the discrete Riemann mapping theorem.

We begin with a definition of circle packings (see also [BeS1], [BoS], [Dul], and
[RS]). LetK be a simplicial 2-complex that is simplicially isomorphic to a triangulation
of a closed disk ifR2. We assume thdt carries an orientation (induced, for example,
from R?). Denote byK?, I K°, KO, K!, andK? the sets of vertices, interior vertices,
boundary vertices, edges, and face&kofrespectively. A collectior? = {Cp ()} cko
of circles inR? is said to be @ircle packingfor K if for every face(¢1, ¢o, ¢3) in K with
the verticeg, ¢, and¢s, listed in positive orderCp (¢1), Cp(£2), Cr(g3)) is a triple of
mutually and externally tangent circlesR? listed in positive order (ifR?) (see Fig. 3).
We remark here that for arig there is a continuum family of associated circle packings,
and any of such packings is uniquely determined by values of radii of boundary circles
up to isometries (see [Dul], [BeS2], and [CdV]).

Assumption. Unless stated otherwise, we assume from now on thRtig a circle
packing, then all circles i® have disjoint interiors.

If P is a circle packing forK, then thecarrier car(P) of P is the collection
{(Jp(2D), [p(&2), [p(£3)) : (C1, Ca, £3) € K?) of triangles inR?, where [»(¢) denotes
the center of the circle i associated with vertex e K°. It follows from our assump-
tion about disjointness of interiors of circles that €&y is in fact a (piecewise linear)
triangulation of a simply connected domainR3, and it is simplicially isomorphic to
the complexk.

We now describe the volume-triangulation ¢&ry* that corresponds to the triangula-
tion carqP). To do this, it is sufficient to define a pointfor every triangld in car(P).

If t = ([p(¢), [p(2), [p(L3)), then we define, to be the radical center of circles
Cp (1), Cp(22), andCp(z3). (For more information, the reader is refered to [Du3], [CO],
and [Ya].) Equivalentlyz; can be described as the center of the inscribed cirdléssfe
Fig. 4(a)). Then the volum¥,, z = [p(¢), is a polygon circumscribed aiy(¢), as in
Fig. 4(b).
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Fig.3. Differentcircle packings (andtheir projected carriers) for the same 2-complex: (a) univalent, (b) locally
univalent, and (c) branched.

Fig. 4. The pointz; and the volumé/,.
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We now address the regularity issues concerning triangulations and volumes generated
by circle packings. First, we define the degree(@egf a triangulationT as the least
upper bound on the number of edges coming out of any verfExTime degree d&@) of
a packing is then defined by dg®) := degcarP)). The key result regarding regularity
is the Ring Lemma [RS], which implies the following circle packing regularity.

CP-Regularity. There exists a constant= «(d), depending only od, such that for
any circle packing® with deg’P) < d,

radiugCp) -
radiugCp) ~

for every pair of adjacent circle®> andC}, that are also interior.

In the above, a circle P is called interior if its center is an interior vertex of o@,
otherwise it is called a boundary circle.

Since the length of an edge in c@) is the sum of radii of two circles centered at the
two endpoints of the edge, and since the radius of the inscribed circle of a triangle can
be explicitly computed (see [Du3]) from lengths of its edges, the following conclusion
is immediately given by CP-regularity.

Corollary 5.1.  For a circle packingP, let carP°) denote the triangulation obtained
from the triangulationcar(P) by removing all triangles having at least one boundary
vertex ThencarnP°) and the associated volume triangulaticar(?°)* have their
regularity constants depending only on the degre® of

As circle packings can be quite easily generated (see [St3]) once a tangency pattern
is given (i.e., a simplicial compleK), the above result shows that triangulations and
volumes that are regular can also be delivered. In particular, approximation results from
earlier sections can be applied.

We define the quasi-uniformity constant of a circle packinas the least upper bound
on the ratio radiug€’p)/radiugCy;) for any two circlesC» andC;, of P. We say that
a collection of circle packing§P,} is regular (respectively, quasi-uniform) if degrees
(quasi-uniformity constants) of packin@,’s are all uniformly bounded. If this is the
case, then it follows that the corresponding families of triangulat{east(?;)} and
{carn(P;)*} are regular (quasi-uniform). From the results of Section 3 and 4 we obtain
the following:

Theorem 5.2. LetQ be a Jordan domainSuppose tha{P,} is a collection of circle
packings contained i such that

(1) radii of circles inP, go toO as h— oo,
(2) there is a constant & 0 such thatdegP,) < d for all n, and
(3) carrierscarn(P,) exhaust.

Denote by u the solution of the Dirichlet problerhu = f in Q and u= ¢ onJ<,
where fe L?(Q) andg € C(dS2). Supposep is a continuous extension gfto some
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neighborhood o#<2. Write u, for the corresponding discrete solutions for triangulations
cari(Py) and volumesarr(P;)*. Then|u—uy || L2camps)) — 0asn— oo. Furthermore
if {Pn} is a quasi-uniform familythen uy, — u uniformly on compacta @ as n— oc.

Remark 5.3. Notice that “traditional” conditions, such as bounds on angles of triangles
in grids [BR], [Ca], [Ci] to ensure the regularity of grids and additional restrictions on
these angles [CMM, (3.5)], [Hn, Section 2.3] to ensure the regularity of volumes, are
replaced in the above theorem by a single combinatorial condition, i.e., every vertex has
no more thard neighbors. (This combinatorial condition is also closely linked with the
assumption that circles in packings have disjoint interiors).

We now recall a result about the convergence of discrete Riemann mappings given by
circle packings. Suppose thatis a Jordan domain. Let, b € €2 be two points. Suppose
{Pn} is a collection of circle packings satisfying conditions (1)—(3) of Theorem 5.2.
Denote byD the unit disk inR?. From the Andreev—Koebe—-Thurston theorem [An],
[Th1] it follows that for eactn there exists a circle packirg, contained inD, with
all boundary circles internally tangent 8®, whose carrier is simplicially isomorphic
to that of P,,. Moreover,P, is normalized so that if a circle i®, contains the poina,
then the corresponding circle i, is centered at 0, and if a circle i, contains the
pointb, then the corresponding circle 7, is centered in the0, 1) interval. Letz, be
a piecewise linear map,: car(P,) — D that maps the center of a circle 7, to the
center of the corresponding circle ®, (see Fig. 5). Also, let” be a piecewise linear
mapz: carmP,) — (0, co) whose value at the center of a circlefq is the ratio of the
radius of the corresponding circle 7, to the radius of the circle i,. Then we have
the following theorem (see [HR], [HS], [RS], [St1], [St2], and [Th2]), whefelenotes
the complex-variable derivative of
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Fig. 5. Two packings giving a discrete Riemann mapping. (Two corresponding triangles are marked for a
reference.)
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Discrete Riemann Mapping Theorem. The sequence of mapsconverges uniformly
on compact subsets@fto the Riemann mapping 2 — Dwitht(a) = Oandz(b) > 0.
Moreover 7/ converge uniformly on compacta @fto |7'|.

The next observation is a straightforward consequence of the above approximation
result and Theorem 5.2.

Corollary 5.4. Let f € L%D) and ¢ € C(0D). Denote byl the solution of the
Dirichlet problem

{—AD =f inD, &

U=¢ onaD.

Let 2 be a Jordan domain and let 2 — D be a Riemann mappingVrite u for the
solution of the Dirichlet problem-Au = f in Q and u = ¢ on 32, where f(z) :=
17'(2)|? f (r(2)) andg(2) = ¢(z(2)). Suppose thetP,} is a collection of circle packings
contained inQ2 and satisfying 1)~(3) of Theoren®.2. Let{75n} be an associated family
of circle packings inD such that the corresponding maps carnP,) — carr(Pn)
andt} converge unlformly on compacta ©fto r and |t/|, respectlverWnte ap, for
the discrete solution o¢*) for tnangulatlonscarr(P") and vqumescarr(PO)* Then
lu—Gn o tnllL2carcpsyy — 0as n— oo. Furthermore if {Pn}is a quasi-uniform family
then(py, o 7, — u uniformly on compact subsets®@fas n— oo.

We now move to random walks on circle packings. For details on the subject of
random walks in general, the reader should consult, for example, [So] or [Wo]. The
notion of random walks on circle packings was introduced in [Du3], and we recall it
briefly here. We first define a conductance along an edgeidfa circle packing foiK
andz, ¢’ € KO, ¢ ~ ¢/, then[p(¢) [p(¢') is an edge in ca(P), and the conductance
induced byP along this edge is defined by

|zt — zy|
[P — [p@)HI

wheret andt’ are two triangles in ca(P) with the common edgér (¢) [»(¢) and, as
before,z; andz, denote the centers of inscribed circles in trianglasdt’, respectively.
Then the transition probability from a vertgx (¢) to another vertex is defined by

Ep(¢,¢) =

Er(¢. )
—_ for ~r,
QP (é‘v é-/) = Z(”»\,;— EP (;" é‘//) g §
0 for ¢~

Becaus{“{ Qp(z, ¢’) = 1foreveryinterior vertex, the matrixQr is a probability
matrix. We refer to the random walk given by the ma@x as the random walkduced
by the packingP.

Next, it is standard to introduce the Laplace operator for a random walk by

Lpu:= (I — Qp)u,
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wherel is the identity matrix and is a real-valued function defined on the set of vertices
of car(P). A function u is said to beharmonic(with respect to the random walk) if
Lru = 0 at every interior vertex. In other words, a function is harmonic if its value
at any interior vertex is equal to the weighted average of its values at the neighboring
vertices.

Recall that, in Section 3, for a triangulatidnwe have defined an operatés . For
T = carr(P), we write Ap for Ar. By comparing the definitions of operatdrs and
Ap we easily get

Proposition 5.5. Let u: car(P)?® — R. Then Lpu(z) = 0 for every interior vertex
z if and only if A>u(z) = O for every interior vertex zFurthermore for any function
@: dcarP)?® — R, the Dirichlet problem for the random walk induced By

Lpu=0 inl carmP)°,
u=g ond carr(P)°,

and the discrete Dirchelet problem

Apu=0 inlcarP)°,
u=g ond carnP)°,

have the same solution

We apply the approximation results from Section 3 to obtain some information on
exit (hitting) probabilities for random walks induced by circle packings. Recall thét if
is a subset of the boundary verticgsarrP)° andz € | carrP)°, then the probability
Mz (z, X) that the random walk (given ) starting atz will reach a boundary vertex
for the first time and such a vertex will be X, is called theexit probability from z
throughX. It follows that, for a fixedz € | carP)°, Mp(z, -) is a probability measure
ond carnP)°.

A similar notion is available in the continuous caselfis a domainz € €, and
X C 992, then the probabilityvl (z, X) that a Brownian particle starting atvill leave the
setQ2 for the first time through the sét is called the exit probability froma throughX.
The next result shows that random walks induced by circle packings mimic the Brownian
motion, and that they can be used to estimate exit probabilities of the Brownian motion.

Theorem 5.6. Let$2 be a C Jordan domainLety be an arc indQ. SupposéP,} is a
guasi-uniform family of circle packings that exhagesti.e., (1)(3) of Theorenb.2are
satisfied. Denote byy, the set{z € dcar(P,)° : z; € y}, where as beforez, denotes
the nearest point 0A<2 to the point zThen for any compact subset of 2,

lim sup|Mp,(z, vn) — M(z, y)| = 0.

N—00 7¢4

Proof.  Letu, be the solution of the Dirichlet problerip, u,(z) = Oforz € | carP,)°
andun(2) = 1if z € ¥, andu,(2) = 0if z € 3 carMPy)°\yn. Thenu,(2) = Mp, (2, ¥n)
for everyz e | car(P,)° [DS], [KSK]. Similarly, if u is the solution of the classical
Dirichlet problemAu = 0in Q andu(z) = 1if z € y andu(z) = 0 if 9Q\y, then
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u(z) = M(z, y) [KS]. Sinceu, is also the solution of the corresponding Dirichlet prob-
lem for the operatoAp, by Proposition 5.5, the assertion of the theorem now follows
from Example 4.6. O

We conclude this paper with some final remarks.

Remark 5.7. 1. Once again, it should be observed that if we had that the discrete
solutions to a Dirichlet problem converge uniformly on compact subsets, regardless of the
guasi-uniform condition, then such a condition could be removed from the assumptions
in the above theorem.

2. The results of this section can easily be extended to circle packings with over-
laps (see [Du3]). Volumes for such circle packings are defined exactly the same as for
circle packings without overlaps, that is corners of volumes (i.e., vertices of the dual
triangulation) are going to be radical centers of triples of circles. However, volumes
will no longer be circumscribed on circles of underlying packings. Nevertheless, by
keeping angles of overlaps away fromi2, a bound on the degree will imply regularity
for packings and corresponding volumes. Also, the issue of quasi-uniformity extends
without any changes. By allowing for overlaps in packings we add more flexibility to
the construction of triangulations and the volumes associated with them.

3. The reader may also be interested in the results [CdVM], [Du2], and [Ma]. As
was shown in Section 4(2) of [Du2], the ratio maps for hexagonal triangulations given
by solutions of a Dirichlet problem for radius functions of circle packings converge
uniformly on compacta to the classical solution of the Dirichlet problem.
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