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Abstract. Convergence results for discrete solutions of Dirichlet problems for Poisson
equations are obtained, where discrete solutions are constructed for triangular grids using
finite volumes with sides perpendicular to, but not necessarily bisecting, corresponding
edges in underlying triangulations. A method, based on properties of circle packings, is
described for generating triangular meshes and associated volumes. Also, the approximation
of exit probabilities of the Brownian motion by exit probabilities of random walks on circle
packings is discussed.

1. Introduction

This paper originated from our studies of discrete harmonic functions given by circle
packings. Such functions were introduced in [Du3] (see also [Du1]) to deal with the
type problem for random walks on infinite planar graphs and the type problem for circle
packings. Here we are interested in properties of these mappings, in particular, in their
connections with classical harmonic functions and approximation issues.

Through most of this paper we actually work with a larger family of maps than the
class of discrete harmonic functions given by circle packings. This family can briefly
be described as consisting of piecewise affine functions, defined for triangulations in
the plane, that are solutions of systems of linear equations derived from classical Pois-
son equations using finite volumes and integration. Finite volume techniques in solving
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differential equations have been studied in the literature for some time now [BR], [Hn],
[Ha], [Ca], [CMM]. The volumes we introduce here (Section 2) are slightly different
from the ones investigated so far, where it was always assumed (explicitly or implicitly)
that the boundaries of volumes cross edges of underlying triangulations at midpoints.
Instead, we require edges of our volumes to be perpendicular to, but not necessarily to
be bisectors of, the corresponding edges in underlying triangulations. Using this type of
volumes, we show in Section 3 that discrete solutions of Poisson equations satisfy the
maximum principle. Furthermore, we prove convergence of discrete solutions for Dirich-
let problems to the corresponding classical solutions in theH1-norm (Theorem 3.5) and
theL2-norm (Theorem 3.6) under rather mild restrictions (i.e., regularity) on triangula-
tions and volumes involved in the process of generating discrete solutions.

In Section 4 we show that if triangulations used to construct discrete solutions are
close to being uniform, then discrete solutions will approximate the classical counterparts
uniformly on compact subsets. This result is proved for both continuous and discontin-
uous boundary conditions, however, in the latter case we require some smoothness on
domains involved in Dirichlet problems.

The question of how to generate “good” triangulations and volumes is addressed in
Section 5. There we show that triangulations and volumes induced by circle packings
have all the desired properties, i.e., regularity, provided some combinatorial (but not
geometric) restrictions on tangency patters in circle packings, which, from practical
point of view, are essentially always satisfied (Corollary 5.1).

We also comment on how a Dirichlet problem for a Poisson equation can be pulled
back to a standard domain (e.g., the unit disk) using the discrete Riemann mapping
theorem for circle packings (Theorem 5.2 and Corollary 5.4).

Finally, we prove that random walks induced by circle packings, which were intro-
duced in [Du3] and [Du1], have a similar behavior to that of Brownian motion by showing
that exit probabilities of a sufficiently dense circle packing filling a domain in the plain
are close to corresponding exit probabilities of Brownian motion in that domain.

2. Triangulations and Volumes

We begin with a description of triangulations and associated volume-triangulations.
SupposeT is a (finite) triangulation of a simply connected domain in the planeR2. We
denote the set of vertices (nodes), edges, and triangles (faces) ofT by T0, T1, andT2,
respectively. We also writeIT0 and∂T0 for the sets of interior and boundary vertices of
T . We use∂T for the (geometric) boundary of the setT . Also, the symbol∼ is used to
denote adjacent elements inT0 or in T2.

Now,T∗ is said to be avolume-triangulationof T in R2 (i.e., a 2-cell dual triangulation)
if the following holds: for every trianglet ∈ T2 there is a unique pointzt inside it so that
(1) zt can be orthogonaly projected on each side oft , and (2) ift andt ′ are two adjacent
triangles, then the segmentzt zt ′ joining zt andzt ′ is perpendicular to and intersects the
common side oft and t ′. For z ∈ IT0, Vz denotes thevolumeassociated withz, i.e.,
a polygon bounded by edgeszt1zt2, zt2zt3, . . . , ztn zt1, wheret1, . . . , tn are consecutive
triangles ofT with vertexz. If z ∈ ∂T0, thenVz is a polygon bounded by edgeszz′t1,
z′t1zt1, zt1zt2, zt2zt3, . . . , ztm−1ztm, ztmz′tm, z′tmz, wheret1, . . . , tm are consecutive triangles of
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Fig. 1. A triangulation (solid lines) and an associated volume-triangulation (dashed lines). Two shaded
polygons indicate an interior volume and a boundary volume.

T with vertexz (with t1 andtm being boundary triangles), andz′t1 (respectively,z′tm) is
the image point of the orthogonal projection ofzt1 (respectively,ztm) onto the boundary
edge oft1 (respectively,tm) originated atz (see Fig. 1).

The regularity constantσT of a triangulationT (see [Ci]) is defined by

σT := sup
t∈T2

diam(t)

in(t)
,

where in(t) is the radius of the inscribed circle oft and diam(t) is the diameter oft . A
large value ofσT indicates thatT has some rather flat triangles. A family of triangulations
{Tn} is said to beregular if there existsσ such thatσTn < σ for all n.

Similarly, we define the regularity constant of a volume-triangulationT∗ by

σT∗ := sup
t∈T2

diam(t)

dist(zt , ∂t)
,

where dist is the distance function. A family of volume-triangulations{T∗n } is said to be
regular if {Tn} is regular andσT∗n < σ ∗ for someσ ∗ > 0 and alln.

For every pairt andt ′ of neighboring triangles inT there is the volumeVt∩t ′ associated
with their common edget ∩ t ′: if zi andzj are the endpoints oft ∩ t ′, thenVt∩t ′ is built
of two triangles4zt zt ′zi and4zt zt ′zi (see Fig. 2(a)). For future references, we remark
that if ρt∩t ′ := min{in(4zt zt ′zi ), in(4zt zt ′zj )} and{T∗n } is regular, then there existsσ
such that

dist(zt , zt ′)

ρt∩t ′
< σ, (♦)

for everyt, t ′ ∈ T2
n , t ∼ t ′, and alln.
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Fig. 2. (a) The volumeVi j , and (b) the segmentszi j andz∗i j .

It is convenient in what follows to use the following notation: fort ∈ T2, |t |denotes the
area oft ; if Vz andVt∩t ′ are volumes, then|Vz| and|Vt∩t ′ | denote their areas, respectively.
Furthermore, ift, t ′ ∈ T2 are adjacent and their common side has the endpointszi and
zj , then we writezi j := t ∩ t ′, z∗i j := zt zt ′ , ρi j := ρt∩t ′ , Vi j := Vt∩t ′ , |zi j | = |zi − zj | :=
dist(zi , zj ), and|z∗i j | := |zt − zt ′ | (Fig. 2(b)).

3. Finite Volume Method

In this section we describe a finite volume method. LetÄ be a domain inR2. By
Hk(Ä), 0 ≤ k, we denote the standardkth Sobolev space, i.e., the set of functions
in Ä with finite ‖ · ‖Hk(Ä) norm, ‖u‖Hk(Ä) := (

∑
|α|≤k

∫
Ä
|Dαu|2 dx)1/2, whereDαu

is a weak derivative ofu, andα is a multi-index (for details, see [GT]). We write
|u|Hk(Ä) := (

∑
|α|=k

∫
Ä
|Dαu|2dx)1/2 for the seminorm inHk(Ä). Furthermore, we

defineH∞(Ä) := {u : ‖u‖L∞(Ä) <∞}, where‖u‖L∞(Ä) denotes the essential supremum
of u in Ä.

We now introduce discrete versions of the above (semi)norms. LetT be a triangulation
of a domain inR2. Denote the set of real-valued functions defined on vertices ofT by
60(T), and the set of continuous functionsw: T → R that are linear on eacht ∈ T2

by61(T). If w ∈ 60(T), then its linear extension is denoted byŵ ∈ 61(T).
We first introduce the following inner product, and discreteH0- and sup-norms in

60(T): for u, w ∈ 60(T),

(u, w)T :=
∑
z∈T0

u(z)w(z)|Vz|,

‖u‖20,T := (u,u)T ,

‖u‖∞,T := sup
z∈T0

|u(z)|.
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The discreteH1 seminorm and norm in60(T) are defined by

|u|21,T :=
∑

zi j ∈T1

(Di j u)
2|Vi j |, where Di j u := u(zj )− u(zi )

|zi j | ,

‖u‖21,T := ‖u‖20,T + |u|21,T .

For future reference we make the following observation:

Remark 3.1. |u|21,T = 1
2

∑
zi j ∈T1(|z∗i j |/|zi j |)|u(zi )− u(zj )|2.

Finally, we extend the definitions of the above discrete (semi)norms to functions
defined inT as follows: if w: T → R, then‖u‖∞,T := ‖u|T0‖∞,T and |u|1,T :=
|u|T0|1,T , whereu|T0 is the restriction ofu to the setT0. If ω is a subset ofT , then
‖u‖∞,ω := supz∈ω∩T0 |u(z)|.

For functions in61(T), the classical and discrete definitions ofH1-seminorms are
closely related in the following way (for a proof see, e.g., [BR]):

Proposition 3.2. There exists a constant C= C(σT ) depending only on the regularity
constantσT of T such that, for u ∈ 61(T),

1

C
|u|H1(T) ≤ |u|1,T ≤ C|u|H1(T).

We now introduce an operator whose domain isH2(T) ∪ 61(T) ∪ 60(T) and the
range is the space of real-valued functions defined overI T 0. If w ∈ H2(T) ∪ 61(T),
then

ATw(z) := − 1

|Vz|
∫
∂Vz

5w · −→η ds for z ∈ IT0,

where−→η denotes the outward unit normal vector on the boundary∂Vz of Vz. If w ∈
60(T), then ATw := AT ŵ. We extend the operatorAT to ĀT : H2(T) ∪ 61(T) ∪
60(T)→ 60(T) by ĀTw(z) := ATw(z) if z ∈ IT0 and ĀTw(z) := 0 for z ∈ ∂T0.

Suppose thatf ∈ L2(T), ϕ ∈ C(∂T), andu is the solution to the Dirichlet problem
−4u = f in T andu = ϕ on ∂T . Then the corresponding discrete problem is defined
as follows:

find w: T0→ R such that

{
ATw(z) = fT (z) for z ∈ IT0,

w(z) = ϕ(z) for ∈ ∂T0,

where fT (z) := (1/|Vz|)
∫

Vz
f dx.

Remark 3.3. 1. Notice that the discrete problem defined above is modeled on a classical
approach where a solution of the equation−4u = f is found by replacing the differential
equation by the integral condition:−(1/|V |) ∫

∂V 5u·−→η ds= (1/|V |) ∫V f dx for every
subsetV ⊂ Ä with Lipschitz boundary.
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2. The discrete problem is a linear problem. In general, if(F,8) ∈ R|I T 0|+|∂T0|, then
the discrete Dirichlet problem,ATw = F in IT0 andw = 8 on ∂T0, has the following
explicit formulation:

1

|Vzi |
∑
zj∼zi

|z∗i j |
|zi j | (w(zi )− w(zj )) = F(zi ) for zi ∈ IT0,

w(z) = 8(z) for z ∈ ∂T0.

(?)

Solutions of the above linear problem have the following important property.

Maximum Principle. If F ≥ 0, then a solutionw of (?) attains its minimum on∂T0.
In particular, if 8 ≥ 0, thenw ≥ 0.

Proof. From the equations in(?) involving interior vertices and the assumption that
F ≥ 0, it follows that ifw attains its global minimum at an interior vertex thenw must
be constant, in particular, attaining minimum on∂T0.

Remark 3.4. 1. From the Maximum Principle one obtains that the linear system of
equations(?) is always uniquely solvable.

2. The above Maximum Principle can also be derived from a probabilistic interpreta-
tion of equations(?) as discussed in the last section of this paper.

The next result gives some estimates on an error between the classical solution of a
Dirichlet problem and its discrete counterpart; the result is essentially due to Cai and
coworkers [Ca], [CMM]. Differences are in the assumptions on families of triangulations
and boundary conditions; we do not require sides of volumes inT∗n to be bisectors of
sides of triangles inTn nor do we impose any conditions on angles of triangles ofTn,
and the boundary ofTn does not need to coincide with the boundary of the domain
considered.

Theorem 3.5. Suppose u∈ H2(Ä) is a solution of−4u = f in Ä, f ∈ L2(Ä).
Let {Tn} be a regular family of triangulations with Tn ⊆ Ä andµn → 0 as n→ ∞,
whereµn = supt∈Tn

diam(t). Assume that{T∗n } is the corresponding family of volume-
triangulations of{Tn}. Denote by un the discrete solution, in Tn, of{

ATnw(z) = fTn(z), z ∈ IT0
n,

w(z) = u(z), z ∈ ∂T0
n .

Then

|u− un|1,Tn ≤ Cµn|u|H2(Ä),

where C is a constant that depends only on the regularity of families{Tn} and{T∗n }.

Proof. Since the proof requires only minor modifications to the one in [CMM], we
outline here the major steps/differences, and for details the reader is refered to [CMM].
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First, we notice that, forw ∈ 60(Tn), one has(Āw,w)Tn = |w|21,Tn
, that follows from

direct calculations:

(Āw,w)Tn =
∑

zi∈I T 0
n

w(zi )

(∑
zj∼zi

−
∫

z∗i j

5ŵ · −→η ds

)

=
∑

zi∈I T 0
n

w(zi )

(∑
zj∼zi

|z∗i j |
|zi j | (w(zi )− w(zj ))

)

=
∑
zi∈T0

n

w(zi )

(∑
zj∼zi

|z∗i j |
|zi j | (w(zi )− w(zj ))

)

= 1
2

∑
zi j ∈T1

n

|z∗i j |
|zi j | (w(zi )− w(zj ))

2 = |w|21,Tn
.

Second, becauseu ∈ H2(Ä), the Sobolev embedding theorem implies thatu ∈ C(Ä)
(andu ∈ C(Ǟ) if Ä has the exterior cone property (see [Ad] and [GT])). Next, define
en := u − un anden

I := u − un
I , whereun

I := ˆu|T0
n
, i.e.,un

I is the linear interpolant of
un overTn. Then, from the definition of discrete solutions and the fact thatun = un

I on
∂T0

n , we obtain

|en|21,Tn
= (Āen,en)Tn =

∑
zi j ∈T1

n

(en(zj )− en(zi ))

(
−
∫

z∗i j

5en
I · −→η ds

)

≤ |en|1,Tn

∑
zi j ∈T1

n

|z∗i j |
|zi j |

(
−
∫

z∗i j

5en
I · −→η ds

)2
1/2

,

that implies

|en|1,Tn ≤
∑

zi j ∈T1
n

|z∗i j |
|zi j |

(
−
∫

z∗i j

5en
I · −→η ds

)2
1/2

.

Now, from the regularity of families{Tn} and {T∗n }, and the property(♦), we obtain
(exactly the same way as in Lemma 3 of [CMM])∣∣∣∣∣

∫
z∗i j

5en
I · −→η ds

∣∣∣∣∣ ≤ C|zi j |5/2|z∗i j |1/2ρ−2
i j |u|H2(Vi j ),

whereC is a constant depending only on the regularity of families{Tn} and{T∗n }. Hence

|en|1,Tn ≤
∑

zi j ∈T1
n

C2σ 4|zi j |2|u|2H2(Vi j )

1/2

≤ Cσ 2µn|u|H2(Ä),

whereσ is a constant as in(♦).
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We now investigate theL2-convergence of discrete solutions. SupposeÄ is a Jor-
dan domain andϕ is a continuous function on∂Ä. Suppose, further, that there is a
neighborhoodÄε ⊂ Ä of ∂Ä and a method for construction of a continuous function
ϕ̄: Äε ∪ ∂Ä 7→ R such thatϕ̄ = ϕ on ∂Ä. (From Tietze’s theorem, we know that
such an extension always exists, however, it may be hard to construct it in a manageable
way.) For example, when∂Ä is C2 (i.e., a twice continuously differentiable curve) then
there existsε such that when dist(z, ∂Ä) < ε then there is a unique pointz∂ ∈ ∂Ä with
dist(z, z∂ ) = dist(z, ∂Ä), andϕ̄ can be defined by a projection, i.e.,ϕ̄(z) := ϕ(z∂ ).

Let f ∈ L2(Ä) and letu be the solution of the Dirichlet problem{−4u = f in Ä,
u = ϕ on ∂Ä.

(∗)

If T is a triangulation with the boundary as a Jordan curve, andT ⊆ Ǟ, ∂T ⊂ Äε ∪ ∂Ä,
and there is an associated volume-triangulationT∗, then we define the corresponding
approximate solutionuT of the above continuous problem by{

ĀTuT (z) = fT (z) for z ∈ IT0,

uT (z) = ϕ̄(z) for z ∈ ∂T0,
(∗∗)

i.e., the system of equations(∗∗) is just a generalization of the earlier definition to a case
where the boundary ofT does not coincide with that ofÄ.

The following result addresses a question of theL2-convergence of discrete solutions
to the classical one.

Theorem 3.6. LetÄ be a Jordan domain with C2-boundary, ϕ ∈ C(∂Ä), and f ∈
L2(Ä). Supposeϕ̄ is a continuous extension ofϕ to an inside neighborhood of∂Ä.
Denote by u the solution to the Dirichlet problem(∗). Assume that{Tn} is a family of
triangulations such that, for each n, Tn is simply connected, Tn ⊆ Ǟ, Tn→ Ä as n→∞
(i.e., sets Tn exhaustÄ), andµn→ 0, whereµn is the mesh size of Tn. Suppose, further,
that{T∗n } is an associated family of volume-triangulations, which is regular. For each n,
let un be the discrete solution of(∗∗) in Tn. Thenlimn→∞ ‖u− un‖L2(Tn) = 0.

Before we give a proof, we make a few remarks.

Remark 3.7. 1. The above result is true for any Jordan domain, not necessarily with
aC2-boundary. By adopting techniques used in the next section together with the proof
below one can give a proof of the general case. However, it should be noted that as∂Ä

gets more bizarre, it is much harder to get a good construction for an extension mapϕ̄.
2. The above result can also be extended to Dirichlet problems for nonsimply con-

nected domains.
3. The sequence of mapsun is bounded by the Maximum Principle. We conjecture

that it is in fact a locally equicontinuous family of mappings. If this is true then{un}
forms a normal family, and hence theun’s converge uniformly on compacta ofÄ to
some continuous functioñu. Then it would follow from the above theorem thatũ must
be equal tou, i.e.,un→ u uniformly on compact subsets ofÄ.
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Proof of Theorem3.6. Letε > 0 and letψ ∈ C∞(∂Ä) such that|ψ − ϕ|∞,Ä < ε.
Write ũ for the solution of(∗) with boundary conditionψ . Denote byũn

I the linear
interpolant ofũ in Tn, i.e.,ũn

I := ̂̃u|T0
n
. Also, denote bỹun the solution of(∗∗) in Tn with

boundary conditionu|T0
n
. Then

‖u−un‖L2(Tn) ≤ ‖u− ũ‖L2(Tn)+‖ũ− ũn
I ‖L2(Tn)+‖ũn

I − ũn‖L2(Tn)+‖ũn−un‖L2(Tn). (1)

We are going to give estimates on terms on the right-hand side of the above inequality.
The smoothness assumptions on∂Ä andψ imply [GT, Theorem. 8.12] that̃u ∈ H2(Ä).
Recall that if a functionw ∈ H1(Ä) is such thatw|∂Ä = 0, then the following Poincar´e
inequality [GT] holds:

‖w‖L2(Ä) ≤
( |Ä|
π

)1/2

|w|H1(Ä). (2)

Becausẽun
I − ũn = 0 on∂Tn, from the Poincar´e ineqality, Theorem 3.5, and Proposi-

tion 3.2, it follows that

‖ũn
I − ũn‖L2(Tn) ≤

( |Tn|
π

)1/2

|ũn
I − ũn|H1(Tn) ≤ C

( |Ä|
π

)1/2

|ũn
I − ũn|H1(Tn)

≤ C

( |Ä|
π

)1/2

µn|ũ|H2(Ä).

Since∂Ä is C2, we get [GT, Theorem 9.30] thatu, ũ ∈ C(Ǟ). As u− ũ is a harmonic
function, we obtain that|u− ũ|∞,Ä ≤ |u− ũ|∞,∂Ä ≤ ε. Thus

‖u− ũ‖L2(Tn) ≤ ‖u− ũ‖L2(Ä) ≤ |Ä|ε. (3)

The definitions ofũn and un together with the fact that|u − ũ|∞,Ä ≤ ε imply that
|ũn − un|∞,∂Tn ≤ 2ε for all largen. By applying the Maximum Principle to discrete
solutionsũn andun, we obtain that|ũn − un|∞,Tn ≤ ε for all largen. Hence

‖ũn − un‖L2(Tn) ≤ 2ε|Ä|, (4)

for largen. Finally, fromũ ∈ H2(Ä) it follows [Ca, Theorems 3.1.6 and 3.2.1] that

lim
n→∞‖ũ− ũn

I ‖L2(Tn) = 0. (5)

Thus, by combining (1)–(5) we obtain the assertion of the theorem.

4. L∞-Convergence

In this section we show that, under some additional conditions on families of trian-
gulations involved in the construction of discrete solutions, we obtain convergence in
sup-norm on compact subsets.
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Let {Tn} and {T∗n } be regular families of triangulations and volume-triangulations.
Throughout this section we assume in addition that{Tn} is quasi-uniform, i.e., there
exists a constantσ such that

supt∈Tn
diam(t)

inft∈Tn diam(t)
≤ σ,

for everyn (see [Ci]). As in the previous section, supposeÄ is a Jordan domain,f ∈
L2(Ä), andϕ ∈ C(Ä). We assume that we also have a continuous mapϕ̄ defined inside
Ä in some neighborhood of∂Ä, which is an extension ofϕ. Letu be the solution of(∗).
We denote byun the discrete solution of(∗∗) for T := Tn. Then the main result is the
following theorem.

Theorem 4.1. If {Tn} and {T∗n } are regular families of triangulations and associated
volume-triangulations, {Tn} is quasi-uniform, the sets Tn exhaustÄ from inside, and
µn = supt∈Tn

diam(t) → 0, then the sequence of maps un converges uniformly on
compact subsets ofÄ to u.

Remark 4.2. 1. As we have pointed out in Remark 3.7, we believe that the conclusion
of the theorem is true without quasi-uniform condition on{Tn}. We hope to resolve this
issue in a sequel.

2. There are related results that address the convergence in sup-norm in Chapter 3.3
of [Ci] and in [Hn]. The main differences are that the boundaries ofTn’s are not that
rigorously associated with∂Ä here as they are in [Ci] and [Hn], and the volumes here
are different from the ones in [Hn]. This allows for consideration of a broader class of
domains but yields loss in estimates for the rate of convergence.

The proof of Theorem 4.1 is given in a sequence of lemmas, where the assertion of
the theorem is first proved forC2-domains and then the general case is split into two
parts: the case of harmonic solutions and the case with zero boundary condition.

Lemma 4.3. SupposeÄ is a C2-domain, f ∈ L2(Ä), andϕ ∈ C(Ä). Then under the
assumptions of Theorem4.1,‖u− un‖∞,Tn → 0.

Proof. Let ε > 0, and letϕε ∈ C(R2) be such that‖ϕ − ϕε‖L∞(∂Ä) < ε. Defineuε to
be the solution of(∗) with boundary conditionϕε. Then, sinceϕε ∈ C(R2), it follows
[GT, Theorem 8.12] thatuε ∈ H2(Ä)∩C(Ǟ). Let uεn be the discrete solution of(∗∗) in
Tn for boundary conditionuεn(z) = uε(z), z ∈ ∂T0

n . By applying the Maximum Principle
to the discrete solutionsun anduεn, and to the classical solutionsu anduε, we obtain the
following inequalities:

‖u− un‖∞,Tn ≤ ‖u− uε‖∞,Tn + ‖uε − uεn‖∞,Tn + ‖uεn − un‖∞,Tn

≤ ‖u− uε‖L∞(Ä) + ‖uε − uεn‖∞,Tn + ‖uεn − un‖∞,∂Tn

= ‖ϕ − ϕε‖L∞(∂Ä) + ‖uε − uεn‖∞,Tn + ‖uεn − un‖∞,∂Tn

≤ ε + ‖uε − uεn‖∞,Tn + ‖ϕε − ϕ̄‖∞,∂Tn .



Discrete Solutions of Dirichlet Problems, Finite Volumes, and Circle Packings 29

Since ϕ̄ is a continuous extension ofϕ, and ∂Tn → ∂Ä as n → ∞, we get that
limn→∞ ‖ϕ̄ − ϕε‖∞,∂Tn < 2ε. To give an estimate on the term‖uε − uεn‖∞,Tn we need
the following result which is due to Oganesyan nad Rukhovets [OR, pp. 74–77]: there
exists a constantC = C(σ ), depending only onσ , such that, for every triangulation
T that is regular and quasi-uniform with corresponding constants no bigger thatσ and
everyw ∈ 61(T) with w|∂T = 0, we have‖w‖L∞(T) ≤ C| logµT |1/2‖w‖H1(T), where
µT := supt∈T diam(t). Now, from Theorem 3.5, the Poincar´e inequality, Proposition 3.2,
and the above result, we obtain

‖uε − uεn‖∞,Tn = ‖ûε|T0
n
− ûεn‖L∞(Tn) ≤ C| logµn|1/2‖ûε|T0

n
− ûεn‖H1(Tn)

≤ C′| logµn|1/2|ûε|T0
n
− ûεn|H1(Tn) ≤ C̃| logµn|1/2|uε − uεn|1,Tn

≤ C̃| logµn|1/2µn|uε|H2(Ä),

whereC, C′, C̃, andC̃′ are just constants independent ofuε or the mesh size ofTn. Thus
limn→∞ ‖uε − uεn‖∞,Tn = 0. Hence limn→∞ ‖u − un‖∞,Tn ≤ 3ε, and asε is arbitrary,
this completes the proof.

We now look into the harmonic part of the solutionu.

Lemma 4.4. SupposeÄ is a Jordan domain, f ≡ 0, andϕ ∈ C(Ä). Then under the
assumptions of Theorem4.1,‖u− un‖∞,Tn → 0.

Proof. Denote byτ : Ä→ D a Riemann mapping, whereD is the unit disk. Let{Äε} be
a sequence ofC2 Jordan domains such thatǞ ⊂ Äε, Ǟε′ ⊂ Äε for ε′ < ε,

⋂
Äε = Ä,

and the boundary ofÄε converges to∂Ä in the sense of Fr´echet (see p. 27 of [LV]
and [Wa]) asε → 0. We defineτε: Äε → D to be the Riemann mapping such that
τε(τ

−1(0)) = 0 andτε(τ−1( 1
2)) > 0. Thenτε → τ uniformly in Ǟ (see [Wa] or [Du2]),

and henceτ−1 ◦ τε → id uniformly in Ǟ.
Let uε := u ◦ τ−1 ◦ τε : Äε → R. Then4uε = 0 in Äε, uε ∈ H2(Ä), and

‖u− uε‖L∞(Ǟ)→ 0 asε→ 0.
Let uεn be the discrete solution of(∗∗) in Tn with fTn ≡ 0 and boundary condition

uεn(z) = uε(z) for z ∈ ∂T0
n . Using the Maximum Principle we obtain the following

estimates:

‖u− un‖∞,Tn ≤ ‖u− uε‖∞,Tn + ‖uε − uεn‖∞,Tn + ‖uεn − un‖∞,Tn

≤ ‖u− uε‖∞,Tn + ‖uε − uεn‖∞,Tn + ‖uεn − un‖∞,∂Tn

≤ ‖u− uε‖L∞(∂Ä) + ‖uε − uεn‖∞,Tn + ‖uεn − uε‖∞,∂Tn

+ ‖uε − u‖∞,∂Tn + ‖u− un‖∞,∂Tn

≤ 2‖u− uε‖L∞(∂Ä) + 2‖uε − uεn‖∞,Tn + ‖u− un‖∞,∂Tn .

Let δ > 0. Recall thatϕ̄ is a continuous extension ofϕ near∂Ä. Henceϕ̄ − u is a
continuous function in some neighborhood of∂Ä, inside ofÄ, andϕ̄ − u = 0 on∂Ä.
Hence, there is some neighborhood of∂Ä such that, for any pointz in this neighborhood,
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|ϕ̄(z) − u(z)| < δ. Therefore, from the boundary condition onun’s it follows that, for
all sufficiently largen, ‖u− un‖∞,∂Tn < 2δ. Next, we chooseεδ to be small enough so
that‖uεδ − u‖L∞(∂Ä) < δ; this is guaranted by the fact that‖u − uε‖L∞(Ǟ) → 0. Then
Lemma 4.2 and the fact that∂Äεδ is C2 imply that limn→∞ ‖uεδ − uεδn ‖∞,Tn = 0. Hence
we obtain that limn→∞ ‖u− un‖∞,Tn ≤ 5δ.

In the next result we deal with the case of homogeneous boundary data.

Lemma 4.5. SupposeÄ is a Jordan domain, f ∈ L2(Ä), andϕ ≡ 0. Then under the
assumptions of Theorem4.1,un→ u uniformly on compacta ofÄ.

Proof. Let {Ä+ε } and{Ä−ε } be sequences ofC2 Jordan domains such thatǞ ⊂ Ä+ε ,
Ǟ+ε′ ⊂ Ä+ε for ε′ < ε,

⋂
Ä+ε = Ä, andǞ ⊃ Ä−ε , Ǟ−ε′ ⊃ Ä−ε for ε′ < ε,

⋃
Ä−ε = Ä.

Denote by f̄ the extension off which is 0 inR2\Ä. We write uε+ for the solution
−4uε+ = f̄ in Ä+ε anduε+ = 0 on ∂Ä+ε . Similarly, we denote byuε− the solution
−4uε− = f in Ä−ε anduε− = 0 on∂Ä−ε .

We also introduce the corresponding discrete solutions as follows. Letuε+n be the
solution of(∗∗) in Tn with boundary conditionuε+n (z) = uε+(z) for z ∈ ∂T0

n . Denote by
Tn,ε the “intersection” ofTn withÄ−ε , i.e., the largest part ofTn contained inÄ−ε which is
still a triangulation of a simply connected domain. Then letuε−n be the solution of(∗∗)
in Tn,ε with boundary conditionuε−n (z) = 0 for z ∈ ∂T0

n,ε.
Suppose first that 0≤ f . By applying the Maximum Principle to classical solutions

we get

u ≤ uε+ in Ä, and uε− ≤ u in Ä−ε .

Similarly, in the discrete setting we have

un(z) ≤ uε+n (z) for z ∈ T0
n , and uε−n (z) ≤ un(z) for z ∈ T0

n,ε; (\)

to obtain the first inequality above, we have used thatu ≤ uε+ in Ä anduε+n = uε+ on
∂T0

n .
Since {uε−} is an increasing sequence of functions asε ↘ 0, anduε− − u are

harmonic, from Harnack’s theorem we get thatuε− → u uniformly on compact subsets
of Ä. Similarly, as{uε+} is a decreasing sequence of functions asε ↘ 0, andu − uε+

are harmonic, we obtain thatuε+ → u uniformly on compacta ofÄ.
From Lemma 4.3, we have that, for a fixedε, ‖uε− − uε−n ‖∞,Ä−ε → 0 asn → ∞.

Also from Lemma 4.3, the fact that, for a fixedε, uε+ ∈ H2(Ä), and thatuε+n = uε+ on
∂T0

n , we obtain that limn→∞ ‖uε+ − uε+n ‖∞,Tn = 0.
Now, letω be a compact subset ofÄ and letδ > 0. If n is large enough so thatω ⊂ Tn,

then from(\) we have

un(z) ≥ uε−n (z) = (uε−n (z)− uε−(z))+ (uε−(z)− u(z))+ u(z)

and

un(z) ≤ uε+n (z) = (uε+n (z)− uε+(z))+ (uε+(z)− u(z))+ u(z),
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for everyz ∈ ω ∩ T0
n . By choosing firstεδ so that‖uεδ− − u‖L∞(ω) < δ and‖uεδ− −

u‖L∞(ω) < δ, and thenN = N(δ, εδ) large enough so that, for alln ≥ N, ‖uεδ−(z) −
uεδ−n (z)‖∞,ω < δ and‖uεδ+(z)− uεδ+n (z)‖∞,ω < δ, we get

‖u− un‖∞,ω < 2δ for all n ≥ N.

Sinceω andδ are arbitrary, this shows thatun→ u uniformly on compact subsets ofÄ
in the case whenf ≥ 0. By symmetry, the same is true forf ≤ 0, and the general case
follows.

We can now prove Theorem 4.1.

Proof of Theorem4.1. Letuh be the solution of(∗) for f ≡ 0, and letuo be the solution
of (∗) for ϕ ≡ 0. From the uniqueness of solutions it follows thatu = uh + uo.

The same is true for discrete solutions. Ifuh
n denotes the solution of(∗∗) for f ≡ 0,

anduo
n denotes the solution of(∗∗) for ϕ ≡ 0, thenun = uh

n+uo
n. Now, the convergence

un→ u is an immediate consequence of Lemmas 4.3 and 4.4.

Theorem 4.1 can, of course, be extended to include discontinuous boundary condi-
tions. However, as more general cases are considered, it is getting much harder to define
in a “practical” way boundary conditions for discrete solutions. We finish this section
with a result related to discontinuous boundary conditions, which is applied in the next
section.

Example 4.6. SupposeÄ is aC2 Jordan domain,f ∈ L2(Ä), andϕ = χγ , whereγ is
an arc in∂Ä andχγ : ∂Ä→ {0,1} is the characteristic function ofγ (i.e.,χγ (z) is equal
to 1 if z ∈ γ and 0 otherwise). Denote byu the solution of(∗) with the above data. Let
{Tn} and{T∗n } be as in Theorem 4.1. Writeun for the discrete solution of(∗∗) in Tn with
the boundary conditionun(z) = χγ (z∂ ), z ∈ ∂T0

n , wherez 7→ z∂ is the projection of
∂T0

n to ∂Ä defined earlier forC2-domains. Thenun→ u uniformly on compact subsets
of Ä.

Proof. The proof is similar to that of Lemma 4.4. Letϕε+, ϕε− ∈ C(∂Ä) be such that
ϕε− ≤ χγ ≤ ϕε+, and the linear measure of sets{z ∈ ∂Ä : |ϕε+(z)−χγ (z)|+|ϕε−(z)−
χγ (z)| > 0} goes to 0 asε→ 0. In other words,ϕε+ andϕε− are two continuous “step”
functions on∂Ä that approximateχγ from above and below, respectively.

We defineuε+ to be the solution of−4uε+ = f inÄanduε+ = ϕε+ on∂Ä. Similarly,
we writeuε− for the solution of−4uε− = f in Ä anduε− = ϕε− on ∂Ä. Then, from
Harnak’s theorem, it follows thatuε+ → u anduε− → u uniformly on compact subsets
of Ä asε→ 0.

Now letuε+n anduε−n be corresponding discrete solutions of(∗∗) in Tn with boundary
conditionsuε+n = ϕε+ on ∂T0

n anduε−n = ϕε− on ∂T0
n , respectively. Then, from the

Maximum Principle for discrete solutions, we obtain

un(z) ≥ uε−n (z) = (uε−n (z)− uε−(z))+ (uε−(z)− u(z))+ u(z)



32 T. Dubejko

and

un(z) ≤ uε+n (z) = (uε+n (z)− uε+(z))+ (uε+(z)− u(z))+ u(z),

for z ∈ T0
n . As in the proof of Lemma 4.5, it now follows from the above inequalities and

convergence of their terms in brackets to 0 on compact subsets, that, for every compact
subsetω of Ä, ‖u− un‖∞,ω → 0 asn→∞.

5. Circle Packings and Random Walks

As we mentioned in the Introduction, this paper was motivated by the results in [Du1]
and [Du3], where discrete harmonic functions for circle packings were introduced. In
this section we discuss connections among circle packings, volume-triangulations, and
random walks. We show how to generate triangulations and associate with them volumes
for domain approximation by means of circle packings. We also describe how a Dirichlet
problem from a reasonable domain can be pulled back to a standard domain, such as the
unit disk, using the discrete Riemann mapping theorem.

We begin with a definition of circle packings (see also [BeS1], [BoS], [Du1], and
[RS]). LetK be a simplicial 2-complex that is simplicially isomorphic to a triangulation
of a closed disk inR2. We assume thatK carries an orientation (induced, for example,
from R2). Denote byK0, IK0, ∂K0, K1, andK2 the sets of vertices, interior vertices,
boundary vertices, edges, and faces ofK, respectively. A collectionP = {CP(ζ )}ζ∈K0

of circles inR2 is said to be acircle packingforK if for every face〈ζ1, ζ2, ζ3〉 inK with
the verticesζ1, ζ2, andζ3, listed in positive order,〈CP(ζ1), CP(ζ2), CP(ζ3)〉 is a triple of
mutually and externally tangent circles inR2 listed in positive order (inR2) (see Fig. 3).
We remark here that for anyK there is a continuum family of associated circle packings,
and any of such packings is uniquely determined by values of radii of boundary circles
up to isometries (see [Du1], [BeS2], and [CdV]).

Assumption. Unless stated otherwise, we assume from now on that ifP is a circle
packing, then all circles inP have disjoint interiors.

If P is a circle packing forK, then thecarrier carr(P) of P is the collection
{〈∫P(ζ1), ∫P(ζ2), ∫P(ζ3)〉 : 〈ζ1, ζ2, ζ3〉 ∈ K2} of triangles inR2, where∫P(ζ ) denotes
the center of the circle inP associated with vertexζ ∈ K0. It follows from our assump-
tion about disjointness of interiors of circles that carr(P) is in fact a (piecewise linear)
triangulation of a simply connected domain inR2, and it is simplicially isomorphic to
the complexK.

We now describe the volume-triangulation carr(P)∗ that corresponds to the triangula-
tion carr(P). To do this, it is sufficient to define a pointzt for every trianglet in carr(P).
If t = 〈∫P(ζ1), ∫P(ζ2), ∫P(ζ3)〉, then we definezt to be the radical center of circles
CP(ζ1), CP(ζ2), andCP(ζ3). (For more information, the reader is refered to [Du3], [Co],
and [Ya].) Equivalently,zt can be described as the center of the inscribed circle oft (see
Fig. 4(a)). Then the volumeVz, z= ∫P(ζ ), is a polygon circumscribed onCP(ζ ), as in
Fig. 4(b).
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Fig. 3. Different circle packings (and their projected carriers) for the same 2-complex: (a) univalent, (b) locally
univalent, and (c) branched.

Fig. 4. The pointzt and the volumeVz.
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We now address the regularity issues concerning triangulations and volumes generated
by circle packings. First, we define the degree deg(T) of a triangulationT as the least
upper bound on the number of edges coming out of any vertex inT . The degree deg(P) of
a packing is then defined by deg(P) := deg(carr(P)). The key result regarding regularity
is the Ring Lemma [RS], which implies the following circle packing regularity.

CP-Regularity. There exists a constantκ = κ(d), depending only ond, such that for
any circle packingP with deg(P) ≤ d,

radius(CP)
radius(C ′P)

≤ κ

for every pair of adjacent circlesCP andC ′P that are also interior.

In the above, a circle ofP is called interior if its center is an interior vertex of carr(P),
otherwise it is called a boundary circle.

Since the length of an edge in carr(P) is the sum of radii of two circles centered at the
two endpoints of the edge, and since the radius of the inscribed circle of a triangle can
be explicitly computed (see [Du3]) from lengths of its edges, the following conclusion
is immediately given by CP-regularity.

Corollary 5.1. For a circle packingP, let carr(P◦) denote the triangulation obtained
from the triangulationcarr(P) by removing all triangles having at least one boundary
vertex. Thencarr(P◦) and the associated volume triangulationcarr(P◦)∗ have their
regularity constants depending only on the degree ofP.

As circle packings can be quite easily generated (see [St3]) once a tangency pattern
is given (i.e., a simplicial complexK), the above result shows that triangulations and
volumes that are regular can also be delivered. In particular, approximation results from
earlier sections can be applied.

We define the quasi-uniformity constant of a circle packingP as the least upper bound
on the ratio radius(CP)/radius(C ′P) for any two circlesCP andC ′P of P. We say that
a collection of circle packings{Pn} is regular (respectively, quasi-uniform) if degrees
(quasi-uniformity constants) of packingsPn’s are all uniformly bounded. If this is the
case, then it follows that the corresponding families of triangulations{carr(P◦n)} and
{carr(P◦n)∗} are regular (quasi-uniform). From the results of Section 3 and 4 we obtain
the following:

Theorem 5.2. LetÄ be a Jordan domain. Suppose that{Pn} is a collection of circle
packings contained inÄ such that

(1) radii of circles inPn go to0 as n→∞,
(2) there is a constant d> 0 such thatdeg(Pn) ≤ d for all n, and
(3) carrierscarr(Pn) exhaustÄ.

Denote by u the solution of the Dirichlet problem−4u = f in Ä and u= ϕ on ∂Ä,
where f ∈ L2(Ä) andϕ ∈ C(∂Ä). Supposēϕ is a continuous extension ofϕ to some
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neighborhood of∂Ä. Write un for the corresponding discrete solutions for triangulations
carr(P◦n)and volumescarr(P◦n)∗.Then‖u−un‖L2(carr(P◦n ))→ 0as n→∞.Furthermore,
if {Pn} is a quasi-uniform family, then un→ u uniformly on compacta ofÄ as n→∞.

Remark 5.3. Notice that “traditional” conditions, such as bounds on angles of triangles
in grids [BR], [Ca], [Ci] to ensure the regularity of grids and additional restrictions on
these angles [CMM, (3.5)], [Hn, Section 2.3] to ensure the regularity of volumes, are
replaced in the above theorem by a single combinatorial condition, i.e., every vertex has
no more thand neighbors. (This combinatorial condition is also closely linked with the
assumption that circles in packings have disjoint interiors).

We now recall a result about the convergence of discrete Riemann mappings given by
circle packings. Suppose thatÄ is a Jordan domain. Leta,b ∈ Ä be two points. Suppose
{Pn} is a collection of circle packings satisfying conditions (1)–(3) of Theorem 5.2.
Denote byD the unit disk inR2. From the Andreev–Koebe–Thurston theorem [An],
[Th1] it follows that for eachn there exists a circle packing̃Pn contained inD, with
all boundary circles internally tangent to∂D, whose carrier is simplicially isomorphic
to that ofPn. Moreover,P̃n is normalized so that if a circle inPn contains the pointa,
then the corresponding circle iñPn is centered at 0, and if a circle inPn contains the
point b, then the corresponding circle iñPn is centered in the(0,1) interval. Letτn be
a piecewise linear mapτn: carr(Pn) → D that maps the center of a circle inPn to the
center of the corresponding circle iñPn (see Fig. 5). Also, letτ #

n be a piecewise linear
mapτ #

n : carr(Pn)→ (0,∞)whose value at the center of a circle inPn is the ratio of the
radius of the corresponding circle iñPn to the radius of the circle inPn. Then we have
the following theorem (see [HR], [HS], [RS], [St1], [St2], and [Th2]), whereτ ′ denotes
the complex-variable derivative ofτ .

Fig. 5. Two packings giving a discrete Riemann mapping. (Two corresponding triangles are marked for a
reference.)
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Discrete Riemann Mapping Theorem. The sequence of mapsτn converges uniformly
on compact subsets ofÄ to the Riemann mappingτ : Ä→ D withτ(a) = 0andτ(b) > 0.
Moreover, τ #

n converge uniformly on compacta ofÄ to |τ ′|.

The next observation is a straightforward consequence of the above approximation
result and Theorem 5.2.

Corollary 5.4. Let f̃ ∈ L2(D) and ϕ̃ ∈ C(∂D). Denote byũ the solution of the
Dirichlet problem {−4ũ = f̃ in D,

ũ = ϕ̃ on ∂D.
(̃∗)

LetÄ be a Jordan domain and letτ : Ä → D be a Riemann mapping. Write u for the
solution of the Dirichlet problem−4u = f in Ä and u= ϕ on ∂Ä, where f(z) :=
|τ ′(z)|2 f̃ (τ (z)) andϕ(z) := ϕ̃(τ (z)). Suppose that{Pn} is a collection of circle packings
contained inÄ and satisfying(1)–(3) of Theorem5.2.Let {P̃n} be an associated family
of circle packings inD such that the corresponding mapsτn: carr(Pn) → carr(P̃n)

and τ #
n converge uniformly on compacta ofÄ to τ and |τ ′|, respectively. Write ũn for

the discrete solution of̃(∗) for triangulationscarr(P̃◦n) and volumescarr(P̃◦n)∗. Then
‖u− ũn ◦ τn‖L2(carr(P◦n ))→ 0 as n→∞. Furthermore, if {P̃n} is a quasi-uniform family,
thenũn ◦ τn→ u uniformly on compact subsets ofÄ as n→∞.

We now move to random walks on circle packings. For details on the subject of
random walks in general, the reader should consult, for example, [So] or [Wo]. The
notion of random walks on circle packings was introduced in [Du3], and we recall it
briefly here. We first define a conductance along an edge. IfP is a circle packing forK
andζ, ζ ′ ∈ K0, ζ ∼ ζ ′, then∫P(ζ )∫P(ζ ′) is an edge in carr(P), and the conductance
induced byP along this edge is defined by

EP(ζ, ζ
′) := |zt − zt ′ |

|∫P(ζ )− ∫P(ζ ′)| ,

wheret andt ′ are two triangles in carr(P) with the common edge∫P(ζ )∫P(ζ ′) and, as
before,zt andzt ′ denote the centers of inscribed circles in trianglest andt ′, respectively.
Then the transition probability from a vertex∫P(ζ ) to another vertex is defined by

QP(ζ, ζ
′) :=


EP(ζ, ζ ′)∑

ζ ′′∼ζ EP(ζ, ζ ′′)
for ζ ∼ ζ ′,

0 for ζ ¿ ζ ′.

Because
∑

ζ ′∼ζ QP(ζ, ζ ′) = 1 for every interior vertexζ , the matrixQP is a probability
matrix. We refer to the random walk given by the matrixQP as the random walkinduced
by the packingP.

Next, it is standard to introduce the Laplace operator for a random walk by

LPu := (I − QP)u,



Discrete Solutions of Dirichlet Problems, Finite Volumes, and Circle Packings 37

whereI is the identity matrix andu is a real-valued function defined on the set of vertices
of carr(P). A function u is said to beharmonic(with respect to the random walk) if
LPu = 0 at every interior vertex. In other words, a function is harmonic if its value
at any interior vertex is equal to the weighted average of its values at the neighboring
vertices.

Recall that, in Section 3, for a triangulationT we have defined an operatorAT . For
T = carr(P), we write AP for AT . By comparing the definitions of operatorsLP and
AP we easily get

Proposition 5.5. Let u: carr(P)0 → R. Then LPu(z) = 0 for every interior vertex
z if and only if APu(z) = 0 for every interior vertex z. Furthermore, for any function
ϕ: ∂ carr(P)0→ R, the Dirichlet problem for the random walk induced byP{

LPu = 0 in I carr(P)0,
u = ϕ on ∂ carr(P)0,

and the discrete Dirchelet problem{
APu = 0 in I carr(P)0,
u = ϕ on ∂ carr(P)0,

have the same solution.

We apply the approximation results from Section 3 to obtain some information on
exit (hitting) probabilities for random walks induced by circle packings. Recall that ifX
is a subset of the boundary vertices∂ carr(P)0 andz ∈ I carr(P)0, then the probability
MP(z, X) that the random walk (given byP) starting atz will reach a boundary vertex
for the first time and such a vertex will be inX, is called theexit probability from z
throughX. It follows that, for a fixedz ∈ I carr(P)0, MP(z, ·) is a probability measure
on ∂ carr(P)0.

A similar notion is available in the continuous case. IfÄ is a domain,z ∈ Ä, and
X ⊂ ∂Ä, then the probabilityM(z, X) that a Brownian particle starting atzwill leave the
setÄ for the first time through the setX is called the exit probability fromz throughX.
The next result shows that random walks induced by circle packings mimic the Brownian
motion, and that they can be used to estimate exit probabilities of the Brownian motion.

Theorem 5.6. LetÄ be a C2 Jordan domain. Letγ be an arc in∂Ä. Suppose{Pn} is a
quasi-uniform family of circle packings that exhaustÄ (i.e., (1)–(3) of Theorem5.2are
satisfied). Denote byγn the set{z ∈ ∂carr(Pn)

0 : z∂ ∈ γ }, where, as before, z∂ denotes
the nearest point on∂Ä to the point z. Then, for any compact subsetω ofÄ,

lim
n→∞ sup

z∈ω
|MPn(z, γn)− M(z, γ )| = 0.

Proof. Letun be the solution of the Dirichlet problem:LPnun(z) = 0 forz ∈ I carr(Pn)
0

andun(z) = 1 if z ∈ γn andun(z) = 0 if z ∈ ∂ carr(Pn)
0\γn. Thenun(z) = MPn(z, γn)

for everyz ∈ I carr(Pn)
0 [DS], [KSK]. Similarly, if u is the solution of the classical

Dirichlet problem4u = 0 in Ä andu(z) = 1 if z ∈ γ andu(z) = 0 if ∂Ä\γ , then
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u(z) = M(z, γ ) [KS]. Sinceun is also the solution of the corresponding Dirichlet prob-
lem for the operatorAPn by Proposition 5.5, the assertion of the theorem now follows
from Example 4.6.

We conclude this paper with some final remarks.

Remark 5.7. 1. Once again, it should be observed that if we had that the discrete
solutions to a Dirichlet problem converge uniformly on compact subsets, regardless of the
quasi-uniform condition, then such a condition could be removed from the assumptions
in the above theorem.

2. The results of this section can easily be extended to circle packings with over-
laps (see [Du3]). Volumes for such circle packings are defined exactly the same as for
circle packings without overlaps, that is corners of volumes (i.e., vertices of the dual
triangulation) are going to be radical centers of triples of circles. However, volumes
will no longer be circumscribed on circles of underlying packings. Nevertheless, by
keeping angles of overlaps away fromπ/2, a bound on the degree will imply regularity
for packings and corresponding volumes. Also, the issue of quasi-uniformity extends
without any changes. By allowing for overlaps in packings we add more flexibility to
the construction of triangulations and the volumes associated with them.

3. The reader may also be interested in the results [CdVM], [Du2], and [Ma]. As
was shown in Section 4(2) of [Du2], the ratio maps for hexagonal triangulations given
by solutions of a Dirichlet problem for radius functions of circle packings converge
uniformly on compacta to the classical solution of the Dirichlet problem.
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