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ON DISCRETE HARMONIC FUNCTIONS

BY H. A. HEELBRONN

Received 19 April 1948

1. INTRODUCTION

A function f(xt, x2) of two real variables xl3 x2 which are restricted to rational integers
will be called discrete harmonic (d.h.) if it satisfies the difference equation

4/(Zi»*2) =/(«i + l,*i)+/(aSi-l,*«)+/(*i,a!«+l)+/(»i,*«-l). (1-1)

This equation can be considered as the direct analogue either of the differential equation

dx\ + dxl~ '
or of the integral equation

f(xltx2) = I f{x1+rcoB(2nd), x2 + r sin (2nd)} dd
Jo

in the notation normally employed to harmonic functions.
The object of this paper is to develop the elementary theory of d.h. functions and

to investigate how far it corresponds to the theory of harmonic functions. We shall
find that many but not all the classical theorems remain valid for d.h. functions.

In many cases the theorems will remain true if we generalize our definition to n
dimensions. A function of TO (rational integer) variables xlt ...,xn is called d.h. if

2nf(x1,...,xn) = f(x1 + l,...,xn) + ...+f(x1,...,xn-l). (1-2)
Several authors have considered similar problems, but none of the results seems to

be relevant for our purpose.

2. DEFINITIONS AND NOTATION

The integer n ̂  2 always denotes the number of dimensions. We shall write f(x) for
f(xlt ...,xn), denoting by x the point with the coordinates xx, ...,xn. Only points with
rational integer coordinates will be considered. Two points x and y will be called
neighbouring points if n

A set of points is called connected if any two points of the set can be connected by
a chain of neighbouring points which belong to the set. The minimum number of links
in the chain will be called the distance of the two points in the set.

A domain consists of two types of points. The interior points which may be any
connected set, and the boundary points. These are the points which do not belong to
the connected set themselves, but which possess at least one neighbour belonging to
the connected set.

It should be noted that a domain is not uniquely determined as a set of points,
unless some rule is given to distinguish the interior points of the domain.
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A function is d.h. in a domain D if it is defined for all points of D and if (1-2) holds for

all interior points x of D. Only real functions will be considered.
A domain will be called finite if it contains only a finite number of points, otherwise

it will be called infinite.
We introduce the following abbreviations:

dj(x) = f{x + uv) -f{x) for 1 < v < n,

= S (/(*+«,) +/(* - O - 2f(*)),
v-1

x,y

where x and y run through all pairs of neighbours of a finite domain D.
TB is the domain whose interior points are

|«1 |<JJ, . . . , |a : i , |<JB.

UB is the domain whose interior points are

I «i I+ ••• + !*» I <-8-
VR is the domain whose interior points are

-R<x^R, \xv\<R for 2<v<n.

For R > 2 the domains T J rand UR are similarly defined except that the origin is a
boundary point.

The constants implied by the symbol 0 depend on n only.

3. THE MAXIMUM PRINCIPLE AND DIRIOHLET'S PRINCIPLE

THEOREM 1. If f(x) is d.h. on a finite domain D, thenf(x) is either a constant or it
attains its maximum on D on the boundary only.

COROLLARY. / / M is the upper bound of a function f(x) which is d.h., bounded and not
constant on an infinite domain D, thenf(x) < M for all interior points x of D.

Proof. Let M be the maximum off{x) on D, and let x0 be an interior point of D where
f(x0) = M. Then it follows from (1-2) that f(x) = M for all neighbours x of x0, and by
induction that f(x) = M for all points x oiD.

THEOREM 2. Let g(x) be a given real function defined on the boundary of a finite domain
D. Then there exists one and only one d.h. function f{x) which takes the values g(x) on the
boundary of D.

If h(x) is a real function defined on D which also takes the values g{x) on the boundary

13-2

D D

and the sign of equality holds' only iff(x) = h(x) for all x of D.
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196 H. A. HBILBBONN

Proof. Let f(x) be the function for which 2 | / ' |2 ^ a
 T""1'™11™; subject to our

D

boundary condition. Then for each interior point xoiD

0Vn2

where the sum is extended over all neighbours x' of x; this proves that f(x) is d.h.
If F(x) were another d.h. function satisfying the boundary condition, then

F(x)—f(x) = 0 by Theorem 1, which shows the uniqueness off(x) and establishes the
theorem.

4. DISCRETE HARMONIC POLYNOMIALS

THEOREM 3. For every integer k > 1 there are exactly
— 2 + n\2k+n-l

jn-\ j k
linearly independent d.h. polynomials of degree not exceeding k.

Proof. For k = 1 the theorem is trivial since the n+1 polynomials 1, x± xn are
all d.h. Hence we may assume that k > 2.

An easy count shows that there are

\ n

linearly independent polynomials of degree not exceeding k. Since every polynomial
of degree not exceeding k — 2 can be represented in the form

f(x) = Ag{x), deg g{x) ^ k,
the operator A maps the additive group of polynomials of degree not exceeding k on
the subgroup of polynomials of degree not exceeding k — 2. Since

&(f(x) + 9(x)) = A/(a;) + Ag(x),
this mapping is a homomorphism.

Hence the quotient group is isomorphic to the group of all d.h. polynomials of degree
not exceeding k; and the latter contains

(k — 2+n\ _ (k — 2 + n\2k+n-l
n ) \ n—\ J k

linearly independent elements.
Examples. For n = 2 the d.h. polynomials are

/k + n\_/
\ n J \

We notice that in this sequence each polynomial of degree k is of the form
fR(xx+x2i)

k + terms of degree not exceeding k—2,
^ ( i " 1 ^ + xzi)

k) + terms of degree not exceeding k — 2,
a fact which is easily verified by direct calculation. It must be pointed out that without
further rules the above sequence is not uniquely defined, as there is a considerable
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degree of freedom in the choice of the lower terms. In this respect the situation differs
fundamentally from the continuous case, where the choice of our polynomials is
easily made unique by the orthogonality rule.

We also give some examples of the case n = 3. By Theorem 3 we have

linearly independent d.h. polynomials of degree not exceeding k, i.e. we have 2fc +1
linearly independent d.h. polynomials of degree k. The first examples are

The question naturally arises: Is it true that an integer function (i.e. a function d.h.
everywhere) can be written as a sum of a unique series of polynomials, at least if n — 2 ?
I t is difficult to see how the classical theorem on the one-one relation between integer
functions and convergent power series can be formulated for d.h. functions, since our
sequence of linearly independent polynomials is not uniquely denned. I t is trivial that
every convergent series of d.h. polynomials converges towards an integer d.h. function.
In the opposite direction we start our discussion by proving

THEOREM 4. Ifn = 2,L is a positive integer, and iff(x) is d.h. on TL> then we can find
a d.h. polynomial P(x) such thatf{x) = P(x) on TL.

Proof. We make the assertion of the theorem more precise by a further specification
of the polynomial P(x). We demand that P(x) shall be a linear combination of poly-
nomials of degree less than 4 i — 2 and of the polynomial of degree 4£ — 2 of the above
sequence which is of the form

This rule puts 8L — 4 polynomials at our disposal, and the domain TL has 8L — 4
boundary points. Hence there are two possibilities: Either we can find a linear com-
bination of our 8L — 4 polynomials which assumes the same boundary values as f(x).
In this case our theorem is proved. Or the 8L — 4 boundary values of our 8L — 4 poly-
nomials are not linearly independent. In this case there exists a linear combination
Q(x) of these polynomials which vanishes on the boundary of TL, Q(x) not being
identically zero. Hence Q(x) vanishes on all points of TL, and, being d.h., vanishes on
all points of U2L_V

Hence Q(x) has 4L—1 zeros on the line xx = 0, and since its degree is less than
4£— 1, Q{x) is either identically zero or divisible by xx. Similarly, since Q(x) is not
identically zero, Q(x) is divisible by x2. Putting

Q(x) = x^xzQx{x),
we have identically

( 2£-i /4L —2\ \

^~2 + Sx (-1)"( 2v ) a^-2-2"*!") + Rip),
where a is a constant and R(x) a polynomial of degree less than 4.L — 2. This is only
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possible if a = 0, and if Q(x) is of degree less than 4L — 2; hence Qx(x) is of degree less
than 4.L — 4. On each of the four lines xx = + 1, x2 = ± 1 the polynomial Qx{x) has at
least ±L—4 zeros, hence it must vanish on these lines identically and

where $2 i8 a polynomial of degree less than 4Zi — 8. Continuing this process we obtain
polynomials Qi(xx, x2) of degree less than 4(L — I) which satisfy

for l < k £ . is of degree less than 4 and has 4 zeros on each of the lines

Hence #£-1 is identically zero and Q(x) is identically zero, which gives the desired
contradiction.

Theorem 4 settles the equation of analytic continuation for a function denned on
a square parallel to the axes. It is easily seen that a d.h. function denned on a domain,
whose interior points are the lattice points of a convex set in the Euclidean plane, can
be continued to a square and therefore is equal to a polynomial.

On the other hand, the function represented by the diagram below (the enclosed
points are the interior points of the domain) cannot be continued as a d.h. function to
the point marked *; hence it does not equal a d.h. polynomial.

0

- 1 0

1

0

0

0

0

0

0

*

0

0

0

0

- 1

0

0 0 0 0
To sum up: All finite domains can be divided into two classes. Functions d.h. on

a domain of the first class can be continued to a square parallel to the axis and can
therefore be represented by a d.h. polynomial. To this class belong all convex domains.

Functions d.h. on a domain of the second class cannot always be represented (or
even approximated to) by d.h. polynomials. To this class belong the domain in the
above diagram and all domains not 'simply connected'.

For infinite domains there is a similar division into two classes; but functions d.h.
on an infinite domain of the first class can only be continued to integer functions which
can be approximated to by a sequence of polynomials. Naturally this approximation
is not uniform, and no analogue to the absolute convergence in the classical theory
seems to exist.

5. LlOTTVUiLB'S THEOREM

We next proceed to prove the analogue of Liouville's theorem on bounded integer
functions.

THEOREM 5. Iff(x) is d.h. everywhere and satisfies the inequality
\f(x)\<M (5-1)

for all x, where M is a constant, thenf(x) is constant.
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Proof (indirect). We may assume without loss ot generality that

dj(x) = g(x)

is not zero everywhere. Since | g(x) | < 2M, there exists a positive upper bound m
such that | g(pc) | ̂  m ^ 2M (5-2)

everywhere, and without loss of generality

g(x)>m — e
somewhere for every e > 0.

We choose an integer I such that Im > 2M,

and a positive S such that lm( 1 — (2rif S) > 2M.

Then we can find a point x*® such that

g(xW)>m-8. (5-3)

We put XW = OF>+AM1 for 0<A<Z.

Then, since (̂a;) is d.h., 2ng{x^) s$ (2n- 1) m + g^),

and by (5-3) S^1 ')>m-2nd.

Applying the same argument again, we obtain by induction for 0 < A ̂  I

g(yPc>)>m-{2n)x8.

Hence 2M >/(â >) -f^) = ' s ? ^ ) > s V - (2»)A <J)
A=0 A=0

which is the desired contradiction.
A natural extension of Theorem 5 is

THEOREM 6. Iff(x) is d.h. everywhere and satisfies the inequality

everywhere, where k is an integer, thenf(x) is a polynomial of degree not exceeding k.
A proof of this theorem will be given in the last paragraph.

6. SOME SPECIAL BOUNDARY PROBLEMS

The simplest problem in two dimensions refers to the domain whose interior points
are all points except the origin. We prove the following generalization of Theorem 5:

THEOREM 7. If n = 2, and iff(x) is bounded for all x and d.h. for all x + o, thenf(x)
is a constant.

Proof. We may assume without loss of generality that

/(o) = l, 0 < / ( * K 2 . (6-1)

Let R > 1 be an integer and letfB(x) be the function d.h. on TJ\ which satisfies

/(o) = l, f(x) = 0 for \x1\ + \x2\ = R.

Clearly 0^fB(x)^fR+1(x)^l, fR(x)^f(x)

for all points of UR, hence the sequence f\(x),f2(x),fz(x), ... converges towards a limit
/ . (*) which satisfies 0 ^fB(x) </„(*) < 1, fjp) </(*),
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provided that x belongs to UR. If we can show that/^, (x) = 1 everywhere, it will follow
that/(a;) ^ 1 everywhere, and since (6-1) is symmetric in/(a;) and 2 —f(x), that 2 — f{x) > 1,
orf(x)Hl.

We define log(l + \Xl \ + \x2 \)
g"{x) = l log (1 + 2?) •

logv
s I <?*(*) I - o s i ^ 1 ^ i r + JJJ log ( 1 + B )

= of I "~1 log"2 -«) = ^(log-1 i?).

Then

Since fR(x) is d.h. on V%, and since fB{x) has the same boundary values as gR(x), we
have, by Theorem 2, s | / i ( a ; ) |2 ̂  ^ | ̂ ( a : ) | , = O ( l o g - i ^ j .

Hence for each x, as B^-oo
, dJR(x) = o(l),

x) = 0, /.(x) = 1.

In three or more dimensions the situation is different. We shall prove only
THEOREM 8. For n = 3 there exists a function which is bounded everywhere, d.h. every-

where except at the origin and not a constant.
Before we proceed to prove this theorem we shall establish a lemma which is well

known in the classical calculus of variations.

LEMMA 1. Let u(£lt£2,iia) be continuous for 1 =%£? + £!-!-£§< (2i?)2 and let u have
continuous bounded partial first derivatives almost everywhere in this domain. Let

« ( £ i , f 2 , £ 3 ) H for £ ! + £8 + £ i = l
and « & , £„&,) = <> for £\ + £\ + £§ = (2J?)».

Then

Proof. On introducing polar coordinates p, 6, A the integral is transformed into

Since, by the Cauchy-Schwarz inequality
2ie

the result follows.

Proof of Theorem 8. As in the proof of Theorem 7 we define fR(x) as the function
d.h. on UR which satisfies fR(o) = 1 and vanishes at all other points of the boundary
of U%. fR(x) increases with R and tends to a hmit/CD(a;). We want to show that/CD(a;) = 1
is not true everywhere, hence we may assume at once that for sufficiently large R

2% for 1«:J><3.
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We now proceed to construct a continuous function u^^, £2) £3) which will coincide
with/j^x) if gx = xlt £2 = x2, g3 = x3. For every cube parallel to the axes, of unit volume,
whose vertices have integer coordinates, we can find 8 constants a000, a100, ..., a m

such that the trilinear form
UR(£I> %2> £3) = aooo + aioo £1 + aoio £2 + aooi £3

+auo £1 £2+aioi £1 £3+aon £2 £3+ a m £1 £2 £3
takes the same values at the vertices of the cube as the function fR(x) (fR(x) being zero
outside U%).

This function uR(£t, £2, £3) is uniquely defined everywhere and satisfies the assump-
tions of Lemma 1. Further for each of our cubes C

c
Hence, by Lemma 1, since every edge belongs to four different cubes

OP

and, putting AB = 2 | /B(X) |2, for i? > 1, we obtain

AR>\TT.

Let trR be defined by ° ' B = / K ( ± ^ ) ( 1 < J > < 3 ) .

We now define a function gR{x,p) by

9R(O,P) = 1, gR{x,p) = pfR(x) for x±o, x in U%

where p is a positive variable. Then

S \g'd*,P) I2 = 6(l- /

As srB(a;, 1) =/(») and as fR(x) is d.h., this expression must be a minimum if p = 1.
Differentiation with respect to p gives

4z S |fl&*,P) I2 = -

If we put p = 1 we obtain

+ 2^-12, o-iJ=l-|^B<l-^,

whence / « ( ± « » ) < 1 - ^ ( U K 3 ) .

We conclude this section with the construction of a function which has many useful
properties.

THEOREM 9. For n^2 there exists a function h(x) d.h. everywhere with the following
properties: ^(0) = i } (6>2)

h{x) = 0 for xn = 0,x + o, (6-3)

h(x) > 0 for xn>0, (6-4)
n) for xn>Q. (6-5)
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Proof. Let £1( •••,Cn-i be TO—1 real continuous variables. We define
as the smaller root of the quadratic equation

* cos £, = 2n. (6-6)

An elementary calculation shows easily that

We put

h(x) = (2n)^r... f* coB(x1£1)...
J —IT J — n

Since 0 satisfies (6-6) we see at once that h(x) is d.h. everywhere. (6-2) and (6-3)
are now trivial.

To prove (6-5) we observe that

Hence J J 0*»(Ci> ...

= 0 J J

= Of", f" exp
J —ooj —00

whereas f... f ^ ( ^ ^ J d£x . . .
J —tr J —n

This proves (6-5), since A(«)

Let M(u) denote the minimum or the greatest lower bound of h(x) for xn = u, u > 0.
C l e a r ly 2M(u)^M(u + l) + M{u-l) for «>0.
Since ilf(O) = 0 and lim M(u) = 0, it follows that M(u) > 0. This proves h(z) > 0 for

a;n ^ 0, and (6-4) follows by Theorem 1.

7. GENERAL BOUNDABY PROBLEMS

THEOREM 10. Let S be an infinite domain with at least one boundary point. If F(x) is
a bounded function defined for all boundary points of S, then the definition of F(x) can be
extended to all points of S such that F(x) is bounded and d.h. in S.

Ifn = 2 this process is unique; ifn>2it is not in general unique.
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Proof. Without loss of generality we may assume that

on the boundary of S. Let x0 be an interior point of 8, and let Sx be the domain which
contains only x0 as interior point. The domains 82, S3, ... are defined by induction by
the following rule: The interior points of Sj+1 are all points of Sl which are interior points
of 8. Clearly each <Sj contains all preceding domains and every x which is an interior
point of 8 belongs to the interior of 8j, if I is sufficiently large. For each I > 0 we find
the function ft(x) d.h. on Sj which vanishes on the boundary points of St which are
interior to S, and which satisfies ft(x) = F{x) on the boundary points of S{ which are
boundary points of 8. Clearly ft(x) is an increasing sequence for fixed x, hence it con-
verges to a function F(x) for all x in 8, which has the required properties.

That F(x) need not be unique for n > 2 has been demonstrated by Theorem 8.
For n = 2 we assume that | F(x) \ ^M for all points of 8 and F(x) = 0 on the boundary

of S, and we have to show that F(x) vanishes on all points of S. We may assume that
o is a boundary point of 8. Let WR for integers R > 1 be the largest domains with o as
boundary point whose interior points are interior points of UR and of 8. I t is clear that
WR exists and is unique for sufficiently large R, and that every boundary point of
WR is either a boundary point of UR or of 8. The function

F(x) + M{l-fR(x)}

is d.h. on all interior points x of WR, fR(x) having the same meaning as in the proof of
Theorem 7. If a; lies on the boundary of 8, F(x) = 0, whereas fR(x) = 0 if a; lies on the
boundary of UR. Hence F ^ + MQ -fR(x)} ^ 0

for all x of WR. Since each fixed interior point x of S belongs to WR if R is sufficiently
large, and since lim fR(x) = 1, it follows that F{x) ^ 0 for all x of 8. In a similar way

iJ->-oo

one proves F(x) < 0 which completes the proof of the theorem.

THEOREM 11. Let 8 be an infinite domain vriih at least one boundary point. If F(x)
is a function defined for all boundary points of 8, then the definition of F(x) can be extended
to all points of 8 such that F(x) is d.h. in S.

Proof. For each positive integer m we define Fm(x) on the boundary points of S by

f m if F(x) > m,
F(x) if \F(x)\^m,
-m if F(x)<-m.

Then the sequence Fm(x) converges towards F(x) on the boundary of 8 and we can
define Fm(x) as a d.h. function in 8 by virtue of Theorem 10. But it does not follow that
the sequence converges for all points of S.

Let xv x2, x3,... run through all interior points of 8 in any order. We shall construct
for each integer I > 0 an infinite sequence fhm{x) of functions d.h. on S which converges
towards F(x) as m^-oo and for which the limit

exists and is independent of I.
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For 1 = 0, the sequence fo,m{%) = Fm(x) has the required property. We apply induc-
tion and assume that we have constructed sequences fo<m(x), ...,fim(x) according to
our rule. Then the sequence/tm(cc,+1) has either a convergent subsequence or it has
a subsequence such that the quotient of two consecutive terms tends to infinity. In
the first case our proposition can obviously be established for I + 1. In the second case
let gJ>m(x) be the subsequence offlitn(x) with

Then Pm^0,

and the sequence fl+1,m(x) = (1 -pm) glm(x)+pmgl>m+1{x)

has the required property, since

for all x for which the limit on the right exists, and since

fi+i,m(xi+i) = 0 for m = 1,2,3,....

Thus our function F(x) is defined and d.h. everywhere in S.
It is easily seen that in Theorem 11 the function F(x) is never unique. The answer

to the question how many linearly independent functions F(x) will satisfy Theorem 11
depends in a rather complicated way on the structure of the domain S. Even the
question whether the number of linearly independent solutions is finite or infinite is
not easily answered.

A further problem arises if we subject F(x) to some conditions restricting its magni-
tude. We have seen that if n = 2 the boundedness of the solution implies uniqueness,
and for certain types of domain a weaker restriction will still preserve uniqueness. This
leads to theorems of the Phragmen-Lindelof type. Many interesting questions arise,
but it seems hopeless to formulate a theorem of reasonable generality.

8. SOME ELEMENTARY INEQUALITIES

It is easily seen that an analogue of Poisson's formula can be established for d.h.
functions. We limit ourselves to a rectangular domain D, whose interior points are
given by the inequalities a > > < X y < ^ („ = i , . . . , n ) .

If f(x) is d.h. on D, and if y is a point of D we have

where x runs through all boundary points of D. Here K{x, y) is the d.h. function of y
which vanishes on all boundary points of D except at the point y = x where it assumes
the value K(x, x) = 1. It follows at once that for every interior point y of D

0<K(x,y)<l.
The exact calculation of K(x, y) is very tedious even for relatively small domains D.
We shall restrict ourselves to prove

https://doi.org/10.1017/S0305004100024713 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004100024713


On discrete harmonic functions 205

THEOREM 12. K(x,y) = O{\ x-y I1-"),

where \x—y\ is the Euclidean distance from x to y.

Proof. Without loss of generality we may assume that x = o,yn^ n~x \y — o\. Then
for all y on the boundary of D 0 ^ K(Xj y) ^ h ^

Since this inequality is also true for all points y interior to D, the theorem follows
from (6-5),

As an easy consequence of Theorem 12 we prove

THEOREM 13. Iff(x) is d.h. on a rectangular domain D, and if y is an interior point of
D which has a Euclidean distance not less than R > Ofrom every boundary point ofD, then

where x runs through all boundary points of D.
Proof. Since 1 =

X

Theorem 12 gives / % ) = ( s K(x, y) f(x)Y < S K\x,
\x ) x

For the proof of our last theorem we require

LEMMA 2. Iff(x) is d.h. on VR and if

f(x)^0 for xt>0, / («)<0 for x^O (8-1)

on the boundary ofVR, then djjfo) > 0.

Iff(x) also satisfies Rx)+f(ux-x) = 0 (8-2)

on all points ofVB, then (8-1) holds on all points ofVR.

Proof. Put g(x) \
J " U l O if

Then g(x) = f(x) on the boundary of l̂ j and, if (8-2) holds,

Since f(x) in d.h. onT^j, it follows that g(x) =f(x) for all points ofl^and (8-1) holds for
all points of VB. This proves the second part of the lemma.

To prove the first part, we put
F(x)=f(x)-f(ul-z).

Then F(z) satisfies (8-2) and (8-1) for all x of VR; hence

THEOREM 14. Iff(x) is d.h. on VR and if onVR

then d\f(p) =
Proof. Without loss of generality M = 1. Let/R(a;) be the function d.h. on VR which

has the boundary values c \ if a; > 0

^ H - i if xUo.
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Clearly fR{x) satisfies (8-2) and (8-1) on all points oiVR. The function

is also d.h. onT ĵ and satisfies (8-2) and (8-1) there. In particular,
gR(z) > 0 for xt = R,
gR(x) ^ 0 for xx — -R+1,
9R(X) = ° f°r xx = B+l and x1 = — R.

Therefore we have on the boundary of TR

'
 f o r x> = 0'

< 0 for | xx | = R,

Hence, by Theorem 12, dxgR{o) < 0(R-x),

and, by Lemma 2, dj(o) < dJR{6) = -^-^ + dxgR(p

In a similar way it is proved that

and the theorem is established.
With the help of Theorem 14, Theorem 6 follows at once in the usual way.
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