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Random walks in random environments
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A renormalization-group analysis is carried out of the long-time behavior of random walks in an
environment with a positionally random local drift force. It is argued that, independent of the
strength of the disorder, the mean-square displacement, (x (t) ), is linear in time (i.e., diffusive) for
dimensions d &2. In two dimensions, universal t/1nt corrections are found and for d =2—e, the

behavior is subdiffusive with (x2(t) )-t'

Marinari et al. ' have recently argued that random
walks in one-dimensional environments with local drifts
which vary randomly as a function of the position of the
walkers can give rise to 1/f noise. They argue that this
arises from the logarithmic time dependence of the
mean-square displacements of such walks found by Sinai.
They then go on to quote numerical evidence for a similar
logarithmic time dependence of the displacement of ran-
dom walks in similar but strongly disordered turo-

dimensional environments. '

In this paper we analyze the behavior as a function of
dimension of random walks in environments with random
local drifts with short-range correlations. In particular, a
renorrnalization group expansion about the limit of weak
disorder is carried out. We will argue that, contrary to
the logarithmic time dependence suggested in Ref. 1, in
any dimension greater than or equal to two, the mean-
square displacement of random walks in such random en-
vironments will be linear in time at long times (i.e., nor-
mal diffusive behavior) independent of the strength of the
disorder. In two dimensions, which is the upper critical
dimension of the problem, there are universal logarithmic
corrections to the diffusive long-time behavior.

Following Ref. 1, we consider a continuum random
walk in d dimensions

= r7(t)+F(x)

with Gaussian-distributed noise ri and random drift force
Fcharacterizing the environment with correlations

(ri (t)rit'(t') ) =2D5 t'5(t t'), —

(F (x)F~(x')) =55 ~5(x —x'),
(q) =(F)=O.

It is necessary to impose a short distance cutoff to make
the problem well defined. The associated Fokker-Planck
equation for the probability distribution P ( x, t) is

=DV P V.(FP) . —
Bt

In order to calculate properties of the probability distribu-
tion averaged over the random force F, we write a
Martin-Siggia-Rose generating function '

Z„Ih(x, t) I
—=g f dP(x, t)

t, X

X5 ' DV P+—V'(FP)

Xexp fdt fdxh(x, t)P(x, t)

=g f dP(x, t)f ' expWF(P, P)
2m

t, x

Xexp fdt f dx h(x, t}

XP(x,t), (4)

where we have introduced a conjugate field P(x, t) which
acts like a source for random walks and the Lagrangian is
(after an integration by parts)

—PF(x) VP

ZIhI=IIfdF(. )c "p „fd IF( )I' ZFIhI

=ff fdP f exp(W)
x, t

with C a normalizing constant, and

W=Wo ——fdt fdt'f dx[P(x, t)VP(x, t)

XP(x, t') VP(x, t')],

By causality, Z+I h =0I =1 for each configuration of the
F's. Therefore, correlation functions of the P's, which
can be obtained by differentiating Zz I h ( x, t) I with
respect to the h's at h =0, do not need normalizing
denominators. Hence the averaging over F can be done
immediately and averaged correlation functions obtained
from derivatives of
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where Wp is the bare Lagrangian, (a)

R —q, —co R +q, co —ico+Dq
CO q

(b)

is trivially calculable for the b, =O case,

1
Gp( q, cp) = —l co+De

(9)

where we have introduced the Fourier transforms R,R of
P,P.

In the absence of disorder, i.e., b. =O, we just have a
conventional random walk with diffusive behavior at long
times. The simplest question to address, initially, is the
stability of this zero disorder diffusive fixed point to a
small amount of disorder. In this formulation, power
counting about this b, =O diffusive fixed point is straight-
forward. We are interested in the response of the proba-
bility distribution at time t to a source of a random walk
at earlier time t' Thi. s is just the response function

—i (P( x ', t')P( x, t) )

which will vanish by causality for t&t'. The Fourier
transform response function

—i(R(q ', co')R (q, co)) =5(q+ q ')5(co+co')G(q, to)

FIG. 1. (a) Line representing the propagator iGO( q, co). The

wiggly line is the 8 end which has frequency —co. (b) Graph
representing the vertex. The slashes denote i q on the incoming
momentum and the dotted line carries zero frequency but any
momentum.

would arise from the graphs shown in Figs. 2(a) and 2(b).
However, the first vanishes by causality and the second
under inversion of the internal momentum. The only
second-order diagram which does not similarly vanish is
shown in Fig. 2(c). It has a q dependence on the external
momentum at small q and hence can renormalize the

q RR term in the Lagrangian; however, there is no renor-
malization of the coefficient of the ERR term. There are
three diagrams which renormalize 6 to order 5 shown in
Fig. 3. The first [Fig. 3(a)] gives a contribution which in
creases 6 and the other two give a larger contribution
which decreases A. Evaluation of the diagrams and re-
scaling the fields to keep D'=D =1 readily yields dif-
ferential recursion relations,

dl
=(2—d)h —cb, +0(b, ),

To calculate the relevancy or irrelevancy of b, about the
6=0 fixed point, we rescale lengths by a factor b and
take R~R'g, R —&R'g, and to~co'b '. It is convenient
to keep the form of the propagator (Eq. 9) fixed with
D'=D, we thus have at the b, =O fixed point, the dynamic
exponent given by

z=2
and

z =2+fb, '+0(b, '),

(a)

(14)

The disorder 6 rescales as

(12)

and hence weak disorder is irrelevant for dimensions
greater than two. To investigate the behavior near two di-
mensions, it is natural to try to do a renormalization
group expansion in powers of b, for weak disorder. It is
straightforward to check that no other relevant or margin-
al operators are consistent with the symmetry.

The renormalization group expansion can be readily
done diagramatically: the propagator iGO is represented

by the line shown in Fig. 1(a) with the wiggly end the R.
The vertex which carries a factor —6/2 is represented by
Fig. 1(b) where the slashes denote i q on the incoming
momentum and the dotted line carries zero frequency (but
any momentum). Causality requires that all closed loops
of Go propagators vanish.

The lowest-order renormalization of the propagator

(c)

FIG. 2. Diagrams which renormalize the propagator; first-
order diagrams (a) and (b) vanish; (c) is the only nonvanishing
second-order term.
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where the coefficients are given by

1 1 1 1C= — + +
2m 4m. 2m 4m

(15)

[contributions from Figs. 3(a), 3(b), and 3(c), respectively];
and

6'= —+O(e ) .
C

In more than two dimensions, to second order in b. the ef-

fective disorder thus becomes weaker at long-length
scales. In less than two dimensions, small disorder will

grow with length scale and there is a nontrivial stable
fixed point of Eq. (13) in d =2—e at = —cA

dl

whence in terms of the bare 5p,

(20)

We thus find that, at least for weak disorder, the long-
time behavior of the displacement in less than two dimen-
sions is slower than diffusive, as might be expected physi-
cally. In one dimension, Sinai has proved that
(x (t)) -(lnt) at long times independent of the strength
of the disorder. Presumably the exponent 2/z determin-
ing the long-time behavior in Eq. (19) goes smoothly from
its value 1 —e near two dimensions to zero, i.e., logarith-
mic behavior, in d =1. Since in exactly two dimensions
the disorder is marginal, we might expect more complicat-
ed behavior there.

In d =2, we have

At this fixed point the dynamic exponent is given from
Eq. (14),

&(1)= hp

1+cool
(21)

z =2+ e +O(e')
c

(17)

The field rescalings will only enter in the combination gg;
at a scale e, g(l)g(l)=e' + '. The impurity averaged
mean-square displacement of a random walk started at
x =0, t =0 is simply related to the response function by

=2+2e

(x (t))= — f e '"'G(q, co)
dq dq

(18)

By scaling it follows that in d =2—e, the mean-square
displacement of the random walk at long times will be
given by

(x'(t)) -t'~'

(19)

Note that the rescaling factor g' exactly cancels frequen-

cy and wave vector integrals in calculating (x (t) ) (this is
due to the linearity of the Fokker-Planck equation).

The characteristic frequency scale Q will renormalize as

0
dl

=[2+fb, '(l)]Q(l) (22)

and we conclude that

b.p=2l —— —6o
c 1+hpcl

(23)

(x (t))t=4DRt 1+. =4DRt 1+, (24)

At sufficiently long times t, with corresponding bare fre-

quency Qp ——1/t, the mean-square displacement, will, by
scaling, be the square of the length scale e at which Q(l)
becomes of order one. From Eq. (23) we can solve asymp-
totically for l with Q(l)=1, Qp very small and b,p fixed
and small. We conclude that, at sufficiently long times,

(a)

(b)

(c)

FIG. 3. Diagrams which renormalize the vertex.

where DR is the renormalized diffusion constant and the
correction coefficient 2f/c is universal. Thus in two di-
mensions there is diffusion at long times with universal
slow transient t /lnt corrections.

Note that the diffusive behavior in two dimensions is
due to the absence of frequency renormalization at order

If an order b, term had been present in Eq. (14), the
mean-square displacement in d =2 would have behaved
subdiffusively as t/(lnt) (with some o.) at long times.
This type of behavior is found in related two dimensional
models.

In more than two dimensions, the irrelevancy (to second
order in b, ) of the disorder about the pure diffusive fixed
point implies that at least for weak disorder there will be
diffusive behavior, i.e., (x (t)) -t. A word of caution is
called for in interpreting the result in d) 2. While the
scaling at the diffusive fixed point does imply by itself
that (x (t) ) -t at long times, it does not immediately im-

ply that the averaged probability distribution (P(x, t) ) of
a walk started at (0,0) behaves diffusively (i.e., like a
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Gaussian) at long times for all finite, but arbitrarily large,
x It.

So far, our results are only valid for weak disorder.
From the behavior in this limit, and the local renormali-
zation group flows of 6, it is tempting to immediately
conclude that the stable zero disorder fixed point controls
the long-time behavior for all b, in d )2 (i.e., the behavior
is always diffusive) and that the stable weak disorder fixed
point 6* controls the long-time behavior for all 6 in
d (2. This is consistent with the behavior in one dimen-
sion found by Sinai; the (x (t))-ln t result applies for
his model independent of the strength of the disorder, as
long as it is finite.

Support for this argument that the domain of attraction
of the weak disorder fixed point includes all finite
strength of the disorder is provided by the naive flow for
strong disorder. If we consider putting the walk on a lat-
tice with nearest-neighbor steps with a nonsingularly dis-
tributed probability bias representing F, then the limit of
infinite disorder corresponds to deterministic motion with
the direction of flow out of each site random in space but
fixed in time. In one dimension, it is clear that after r

steps, in all but an exponentially small fraction of the en-
semble of environments the walk will be trapped hopping
between two neighboring sites. Thus (x (t)) will go to a
constant at long times. In higher dimensions, since the
probability per unit time of getting trapped in a small cy-
cle (although there will also be trapping in large cycles)
will be roughly independent of time, it is reasonable to as-
sume that the configuration averaged mean-square dis-
placernent will also go to a constant at long times.

In one dimension, any amount of thermal noise (i.e., the
disorder large but finite) will cause the mean-square dis-
placement to diverge at long times; the infinite disorder
fixed point thus must be unstable to 1/h. In higher di-
mensions, the large trapped cycles and their domains of
attraction will be convoluted and it is possible that at
some point on a cycle with a large basin of attraction a
small amount of thermal noise could take the walk onto
another cycle, in contrast to the case in d =1 where a
large basin of attraction of a cycle immediately yields
(since in d =1, F can be thought of as the gradient of a
potential) a large barrier which must be overcome by the
thermal noise. Thus, naively, a small amount of thermal
noise is unlikely to have a smaller effect on the long-time
behavior in higher dimensions than in one dimension and
hence the infinite disorder fixed point will generally be
unstable to 1/6 in all dimensions.

Unless there are two (or more) transitions as a function
of 5, it is reasonable to believe that the flow away from
b.= oo will go towards the stable weak disorder (in d (2)
or zero disorder (in d )2) fixed point. If this is the case
the weak disorder behavior investigated here will be valid
for arbitrary finite strength of the disorder. Liang et al.
have recently pointed out, however, that if the distribution
of hopping probabilities p(i~j), in a lattice model (with
i,j nearest neighbors) is sufficiently singular, then subdif-
fusive behavior is possible in any dimension. This will
occur when there are a large number of sites for which the
probability of hopping out in one of the directions is very
close to unity, i.e., if the distribution of the p(i~j) is

strongly divergent as p (i ~j) approaches one. In this case
there will be neighboring i,j sites with p(j~j) and
pj(~i) both near one and walks arriving at i or j will
stay trapped for a long time, leading to subdiffusive
behavior. However as long as the distribution of the
p(i~j) is nonsingular, which should be the case for
discretizations of continuum models such as that dis-
cussed here, then this local trapping should not occur
often enough to prevent most of the walks from diffusing.

In more than two dimensions, another suggestive argu-
ment can be made for diffusive behavior independent of
the strength of the nonsingular disorder by drawing analo-
gies with results on phonon localization. We consider the
Fokker-Planck equation (3), which has the form

P = —JP (2&)

with J the non-Herrnitian operator,

J=—DV2+ V F . (26)

The Green's functions of J are simply related to those of
the adjoint operator,

J+=—DV —F V, (27)

which we note trivially has an extended eigenfunction (the
constant function) with eigenvalue zero. A somewhat
similar Hermitian operator,

DV V( x )V——[V V—( x )].V, (28)

with V(x) random (but bounded below by D) has bee—n
studied in connection with phonon localization; it also
has a trivial extended eigenfunction with zero eigenvalue
in any dimension. Renormalization group arguments near
two dimensions have shown that for d & 2 there is a finite
range of eigenvalues E near zero for which the eigenfunc-
tions of A are extended; the disorder is effectively small-
er at low energy, E. This is a consequence of the ap-
parently reasonably general result that, in more than two
dimensions, extended eigenfunctions of Hermitian opera-
tors which have the form A = —DV plus short-range
random parts stay extended as any parameter controlling
the effective disorder is varied by a small amount.

It is tempting to hope that this applies also to non-
Hermitian operators which exhibit an extended state. If
this naive assumption is correct, then J+ should have ex-
tended states for a band of eigenvalues near zero. If J+
were Hermitian, any initial condition could be expanded
in eigenfunctions and the long-time behavior would be
given by the extended eigenfunctions corresponding to the
eigenvalues with the lowest real part; the long-time
behavior would then be diffusive. This argument, though
suggestive, cannot be made for the non-Hermitian case.
The operator J+ will generally not have a complete set of
eigenfunctions even though it can straightforwardly be
shown that the real parts of the eigenvalues of J+ must
be non-negative. It is plausible, however, that an argu-
ment for diffusive behavior of the eigenfunctions of J+
(or J) can be made and a convincing demonstration of dif-
fusive behavior for strong disorder in d & 2 given by
means similar to those of Ref. 8. This possibility certain-
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ly merits further study.
We note, however, that while the existence of extended

states at low frequencies is likely to be sufficient to yield
diffusive behavior of the one-particle Green's function of
interest here, it is definitely not necessary. In particular,

if the force F in Eq. (1) is the gradient of a random poten-
tial with mean square 6„, then calculations similar to
those presented here show that 6„ is irrelevant, implying
diffusive behavior, even in one dimension where the disor-
der is surely sufficient to localize almost all the eigenfunc-
tions. What is important for determining whether there is
diffusive behavior, is not whether the eigenfunctions are
localized, but how rapidly the localization length grows as
the eigenvalue tends to zero. The arguments given here
all support the conclusion that independent of the
strength of the disorder random walks in nonsingular ran-
dom environments will exhibit diffusive behavior in more
than two dimensions.

The conclusion that there will always be diffusive
behavior also in two dimensions is, however, inconsistent
with the numerical results quoted in Ref. 1 for strong dis-
order. A possible source of this discrepancy is the slow
transient in d =2, which causes the universal logarithmic
correction to the diffusive behavior, and, on intermediate
time scales, can yield an apparent exponent z & 2 which
varies very slowly with time. Tentative support for this
interpretation is provided by recent numerical work.
However, another possible resolution of the apparent
discrepancies between the continuum results here and the
numerical lattice results of Ref. 1 for very strong disorder
has been suggested by Liang et al. In the strong dis-
order limit, the lattice model of Ref. 1 has a singular dis-
tribution of hopping probabilities p (i ~j) of the form dis-
cussed above. This could cause the behavior of (x (t) ) to
be a subdiffusive power law of t. As mentioned previ-
ously this is not expected to occur in the continuum with
Gaussian (or other well-behaved) distribution of random
forces nor in lattice models without anomalous distribu-
tions of the local hopping probabilities. A transition to
subdiffusive behavior for strong disorder in d )2 cannot,

however, be ruled out entirely even for lattice models
without anomalous distributions of local hopping proba-
bilities.

Unfortunately, the hope of the authors of Ref. 1 that
random walks in random environments might provide a
general source of 1/f noise appears unlikely to be valid.

After a preliminary version of this manuscript had been
written, the author received several preprints' ' which
contained considerable overlap with this work. One of
these' considers a more general problem but concludes
that for the case of interest here there is diffusive behavior
in d )2, although neither the logarithmic corrections in
d =2 nor the 0(e ) correction in 2 —e are calculated. A
second preprint, " takes a very similar approach to that
taken here, and the results in a new version agree with
those presented here. A third paper by J. M. Luck, '

evaluates the behavior in d =2—e, and finds logarithmic
corrections to another quantity (related to the response to
a uniform applied drift) in d =2. The result for the 0(e )

correction to z in 2 twas—smaller by a factor of 2 in the
preprint than that derived here and larger by a factor of 2
in the published version. It is not clear what is the source
of this discrepancy. Luck's analysis of the non-linear
response to a uniform applied drift force generalizes to di-
mensions near two the one-dimensional results in Ref. 2.
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