Tomography

Keegan Go Ahmed Bou-Rabee Stephen Boyd

EE103 Stanford University

November 2, 2014

Tomography

- ▶ goal is to reconstruct or estimate a function $f : \mathbf{R}^2 \to \mathbf{R}$ from (possibly noisy) line integral measurements
- \blacktriangleright f is sometimes called (or interpreted as) an *image*
- ▶ we'll focus on 2-dimensional case, but it can be extended to 3-
- used in medicine, manufacturing, networking, geology
- best known application: CAT (computer-aided tomography) scan

Outline

Line integral measurements

Least-squares reconstruction

Example

Line integral measurements

Line integral

• parameterize line ℓ in \mathbf{R}^2 as

$$z(t) = (x_0, y_0) + t(\cos \theta, \sin \theta), \quad t \in \mathbf{R}$$

- (x_0, y_0) is (any) point on the line

- θ is angle of line (measured from horizontal)
- parameter t is length along line

▶ line integral (of f, on ℓ) is

$$\int_{\ell} f = \int_{-\infty}^{\infty} f(z(t)) \ dt$$

Line integral measurements

- we have m line integral measurements of f with lines ℓ_1, \ldots, ℓ_m
- *i*th measurement is

$$y_i = \int_{-\infty}^{\infty} f(z_i(t)) dt + v_i, \quad i = 1, \dots, m$$

- $z_i(t)$ is parametrization of ℓ_i
- $-v_i$ is the noise or measurement error (assumed to be small)
- ▶ line integral measurements are $y = (y_1, ..., y_m)$

Example of line integral measurements in 2-d

image is 50×50 60 measurements shown

Example of line integral measurements in 2-d

Another example

image is 50×50 60 measurements shown

Another example

Discretization of f

- \blacktriangleright we discretize the function f, assuming it's constant on n pixels, numbered 1 to n
- represent (discretized) function f by n-vector x
- x_i is value of f in pixel i
- line integral measurement y_i has form

$$y_i = \sum_{j=1}^n A_{ij} x_j + v_i$$

- $\blacktriangleright \ A_{ij}$ is length of line ℓ_i in pixel j
- ▶ in matrix-vector form, we have

$$y = Ax + v$$

Outline

Line integral measurements

Least-squares reconstruction

Example

Least-squares reconstruction

Smoothness prior

▶ we assume that image is not too rough, as measured by (Laplacian)

 $||D_1x||^2 + ||D_2x||^2$

- D_1x gives first order difference in horizontal direction
- $D_2 x$ gives first order difference in vertical direction
- roughness measure is sum of squares of first order differences
- \blacktriangleright it is zero only when x is constant

Least-squares reconstruction

• choose \hat{x} to minimize

$$||A\hat{x} - y||^2 + \lambda(||D_1\hat{x}||^2 + ||D_2\hat{x}||^2)$$

- first term is $||v||^2$, or deviation between what we observed (y) and what we would have observed without noise $(A\hat{x})$
- second term is roughness measure
- ▶ regularization parameter λ > 0 trades off measurement fit versus roughness of recovered image

Outline

Line integral measurements

Least-squares reconstruction

Example

Example

Image

 50×50 image (n = 2500)

Example

Lines

- 40 angles, 40 offsets (m = 1600 lines)
- ▶ 60 lines shown
- small measurement noise

Reconstruction

reconstructions with $\lambda=10^{-6}, 20, 230, 2600$

Example

Varying the number of line integrals

reconstruct with m = 100, 400, 2500, 6400 lines (with $\lambda = 10, 15, 25, 30$)

